Solve for y
y=-\frac{9}{14}\approx -0.642857143
Graph
Share
Copied to clipboard
6\times \frac{3\times 2+1}{2}-4\left(2\times 3+1\right)y=3\left(3\times 4+1\right)
Multiply both sides of the equation by 12, the least common multiple of 2,3,4.
6\times \frac{6+1}{2}-4\left(2\times 3+1\right)y=3\left(3\times 4+1\right)
Multiply 3 and 2 to get 6.
6\times \frac{7}{2}-4\left(2\times 3+1\right)y=3\left(3\times 4+1\right)
Add 6 and 1 to get 7.
\frac{6\times 7}{2}-4\left(2\times 3+1\right)y=3\left(3\times 4+1\right)
Express 6\times \frac{7}{2} as a single fraction.
\frac{42}{2}-4\left(2\times 3+1\right)y=3\left(3\times 4+1\right)
Multiply 6 and 7 to get 42.
21-4\left(2\times 3+1\right)y=3\left(3\times 4+1\right)
Divide 42 by 2 to get 21.
21-4\left(6+1\right)y=3\left(3\times 4+1\right)
Multiply 2 and 3 to get 6.
21-4\times 7y=3\left(3\times 4+1\right)
Add 6 and 1 to get 7.
21-28y=3\left(3\times 4+1\right)
Multiply 4 and 7 to get 28.
21-28y=3\left(12+1\right)
Multiply 3 and 4 to get 12.
21-28y=3\times 13
Add 12 and 1 to get 13.
21-28y=39
Multiply 3 and 13 to get 39.
-28y=39-21
Subtract 21 from both sides.
-28y=18
Subtract 21 from 39 to get 18.
y=\frac{18}{-28}
Divide both sides by -28.
y=-\frac{9}{14}
Reduce the fraction \frac{18}{-28} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}