Evaluate
\frac{189}{550}+\frac{7}{50y}
Expand
\frac{189}{550}+\frac{7}{50y}
Graph
Share
Copied to clipboard
\frac{3\times 3^{2}y^{2}+4\times 3y-y}{4\times 3y^{2}+5\times 3y^{2}-2y^{2}}\times \frac{2\times 3y+y}{7\times 3y+y}
Expand \left(3y\right)^{2}.
\frac{3\times 9y^{2}+4\times 3y-y}{4\times 3y^{2}+5\times 3y^{2}-2y^{2}}\times \frac{2\times 3y+y}{7\times 3y+y}
Calculate 3 to the power of 2 and get 9.
\frac{27y^{2}+4\times 3y-y}{4\times 3y^{2}+5\times 3y^{2}-2y^{2}}\times \frac{2\times 3y+y}{7\times 3y+y}
Multiply 3 and 9 to get 27.
\frac{27y^{2}+12y-y}{4\times 3y^{2}+5\times 3y^{2}-2y^{2}}\times \frac{2\times 3y+y}{7\times 3y+y}
Multiply 4 and 3 to get 12.
\frac{27y^{2}+11y}{4\times 3y^{2}+5\times 3y^{2}-2y^{2}}\times \frac{2\times 3y+y}{7\times 3y+y}
Combine 12y and -y to get 11y.
\frac{27y^{2}+11y}{12y^{2}+15y^{2}-2y^{2}}\times \frac{2\times 3y+y}{7\times 3y+y}
Do the multiplications.
\frac{27y^{2}+11y}{27y^{2}-2y^{2}}\times \frac{2\times 3y+y}{7\times 3y+y}
Combine 12y^{2} and 15y^{2} to get 27y^{2}.
\frac{27y^{2}+11y}{25y^{2}}\times \frac{2\times 3y+y}{7\times 3y+y}
Combine 27y^{2} and -2y^{2} to get 25y^{2}.
\frac{y\left(27y+11\right)}{25y^{2}}\times \frac{2\times 3y+y}{7\times 3y+y}
Factor the expressions that are not already factored in \frac{27y^{2}+11y}{25y^{2}}.
\frac{27y+11}{25y}\times \frac{2\times 3y+y}{7\times 3y+y}
Cancel out y in both numerator and denominator.
\frac{27y+11}{25y}\times \frac{6y+y}{7\times 3y+y}
Multiply 2 and 3 to get 6.
\frac{27y+11}{25y}\times \frac{7y}{7\times 3y+y}
Combine 6y and y to get 7y.
\frac{27y+11}{25y}\times \frac{7y}{21y+y}
Multiply 7 and 3 to get 21.
\frac{27y+11}{25y}\times \frac{7y}{22y}
Combine 21y and y to get 22y.
\frac{27y+11}{25y}\times \frac{7}{22}
Cancel out y in both numerator and denominator.
\frac{\left(27y+11\right)\times 7}{25y\times 22}
Multiply \frac{27y+11}{25y} times \frac{7}{22} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(27y+11\right)\times 7}{550y}
Multiply 25 and 22 to get 550.
\frac{189y+77}{550y}
Use the distributive property to multiply 27y+11 by 7.
\frac{3\times 3^{2}y^{2}+4\times 3y-y}{4\times 3y^{2}+5\times 3y^{2}-2y^{2}}\times \frac{2\times 3y+y}{7\times 3y+y}
Expand \left(3y\right)^{2}.
\frac{3\times 9y^{2}+4\times 3y-y}{4\times 3y^{2}+5\times 3y^{2}-2y^{2}}\times \frac{2\times 3y+y}{7\times 3y+y}
Calculate 3 to the power of 2 and get 9.
\frac{27y^{2}+4\times 3y-y}{4\times 3y^{2}+5\times 3y^{2}-2y^{2}}\times \frac{2\times 3y+y}{7\times 3y+y}
Multiply 3 and 9 to get 27.
\frac{27y^{2}+12y-y}{4\times 3y^{2}+5\times 3y^{2}-2y^{2}}\times \frac{2\times 3y+y}{7\times 3y+y}
Multiply 4 and 3 to get 12.
\frac{27y^{2}+11y}{4\times 3y^{2}+5\times 3y^{2}-2y^{2}}\times \frac{2\times 3y+y}{7\times 3y+y}
Combine 12y and -y to get 11y.
\frac{27y^{2}+11y}{12y^{2}+15y^{2}-2y^{2}}\times \frac{2\times 3y+y}{7\times 3y+y}
Do the multiplications.
\frac{27y^{2}+11y}{27y^{2}-2y^{2}}\times \frac{2\times 3y+y}{7\times 3y+y}
Combine 12y^{2} and 15y^{2} to get 27y^{2}.
\frac{27y^{2}+11y}{25y^{2}}\times \frac{2\times 3y+y}{7\times 3y+y}
Combine 27y^{2} and -2y^{2} to get 25y^{2}.
\frac{y\left(27y+11\right)}{25y^{2}}\times \frac{2\times 3y+y}{7\times 3y+y}
Factor the expressions that are not already factored in \frac{27y^{2}+11y}{25y^{2}}.
\frac{27y+11}{25y}\times \frac{2\times 3y+y}{7\times 3y+y}
Cancel out y in both numerator and denominator.
\frac{27y+11}{25y}\times \frac{6y+y}{7\times 3y+y}
Multiply 2 and 3 to get 6.
\frac{27y+11}{25y}\times \frac{7y}{7\times 3y+y}
Combine 6y and y to get 7y.
\frac{27y+11}{25y}\times \frac{7y}{21y+y}
Multiply 7 and 3 to get 21.
\frac{27y+11}{25y}\times \frac{7y}{22y}
Combine 21y and y to get 22y.
\frac{27y+11}{25y}\times \frac{7}{22}
Cancel out y in both numerator and denominator.
\frac{\left(27y+11\right)\times 7}{25y\times 22}
Multiply \frac{27y+11}{25y} times \frac{7}{22} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(27y+11\right)\times 7}{550y}
Multiply 25 and 22 to get 550.
\frac{189y+77}{550y}
Use the distributive property to multiply 27y+11 by 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}