Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3\times 3^{2}y^{2}+4\times 3y-y}{4\times 3y^{2}+5\times 3y^{2}-2y^{2}}\times \frac{2\times 3y+y}{7\times 3y+y}
Expand \left(3y\right)^{2}.
\frac{3\times 9y^{2}+4\times 3y-y}{4\times 3y^{2}+5\times 3y^{2}-2y^{2}}\times \frac{2\times 3y+y}{7\times 3y+y}
Calculate 3 to the power of 2 and get 9.
\frac{27y^{2}+4\times 3y-y}{4\times 3y^{2}+5\times 3y^{2}-2y^{2}}\times \frac{2\times 3y+y}{7\times 3y+y}
Multiply 3 and 9 to get 27.
\frac{27y^{2}+12y-y}{4\times 3y^{2}+5\times 3y^{2}-2y^{2}}\times \frac{2\times 3y+y}{7\times 3y+y}
Multiply 4 and 3 to get 12.
\frac{27y^{2}+11y}{4\times 3y^{2}+5\times 3y^{2}-2y^{2}}\times \frac{2\times 3y+y}{7\times 3y+y}
Combine 12y and -y to get 11y.
\frac{27y^{2}+11y}{12y^{2}+15y^{2}-2y^{2}}\times \frac{2\times 3y+y}{7\times 3y+y}
Do the multiplications.
\frac{27y^{2}+11y}{27y^{2}-2y^{2}}\times \frac{2\times 3y+y}{7\times 3y+y}
Combine 12y^{2} and 15y^{2} to get 27y^{2}.
\frac{27y^{2}+11y}{25y^{2}}\times \frac{2\times 3y+y}{7\times 3y+y}
Combine 27y^{2} and -2y^{2} to get 25y^{2}.
\frac{y\left(27y+11\right)}{25y^{2}}\times \frac{2\times 3y+y}{7\times 3y+y}
Factor the expressions that are not already factored in \frac{27y^{2}+11y}{25y^{2}}.
\frac{27y+11}{25y}\times \frac{2\times 3y+y}{7\times 3y+y}
Cancel out y in both numerator and denominator.
\frac{27y+11}{25y}\times \frac{6y+y}{7\times 3y+y}
Multiply 2 and 3 to get 6.
\frac{27y+11}{25y}\times \frac{7y}{7\times 3y+y}
Combine 6y and y to get 7y.
\frac{27y+11}{25y}\times \frac{7y}{21y+y}
Multiply 7 and 3 to get 21.
\frac{27y+11}{25y}\times \frac{7y}{22y}
Combine 21y and y to get 22y.
\frac{27y+11}{25y}\times \frac{7}{22}
Cancel out y in both numerator and denominator.
\frac{\left(27y+11\right)\times 7}{25y\times 22}
Multiply \frac{27y+11}{25y} times \frac{7}{22} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(27y+11\right)\times 7}{550y}
Multiply 25 and 22 to get 550.
\frac{189y+77}{550y}
Use the distributive property to multiply 27y+11 by 7.
\frac{3\times 3^{2}y^{2}+4\times 3y-y}{4\times 3y^{2}+5\times 3y^{2}-2y^{2}}\times \frac{2\times 3y+y}{7\times 3y+y}
Expand \left(3y\right)^{2}.
\frac{3\times 9y^{2}+4\times 3y-y}{4\times 3y^{2}+5\times 3y^{2}-2y^{2}}\times \frac{2\times 3y+y}{7\times 3y+y}
Calculate 3 to the power of 2 and get 9.
\frac{27y^{2}+4\times 3y-y}{4\times 3y^{2}+5\times 3y^{2}-2y^{2}}\times \frac{2\times 3y+y}{7\times 3y+y}
Multiply 3 and 9 to get 27.
\frac{27y^{2}+12y-y}{4\times 3y^{2}+5\times 3y^{2}-2y^{2}}\times \frac{2\times 3y+y}{7\times 3y+y}
Multiply 4 and 3 to get 12.
\frac{27y^{2}+11y}{4\times 3y^{2}+5\times 3y^{2}-2y^{2}}\times \frac{2\times 3y+y}{7\times 3y+y}
Combine 12y and -y to get 11y.
\frac{27y^{2}+11y}{12y^{2}+15y^{2}-2y^{2}}\times \frac{2\times 3y+y}{7\times 3y+y}
Do the multiplications.
\frac{27y^{2}+11y}{27y^{2}-2y^{2}}\times \frac{2\times 3y+y}{7\times 3y+y}
Combine 12y^{2} and 15y^{2} to get 27y^{2}.
\frac{27y^{2}+11y}{25y^{2}}\times \frac{2\times 3y+y}{7\times 3y+y}
Combine 27y^{2} and -2y^{2} to get 25y^{2}.
\frac{y\left(27y+11\right)}{25y^{2}}\times \frac{2\times 3y+y}{7\times 3y+y}
Factor the expressions that are not already factored in \frac{27y^{2}+11y}{25y^{2}}.
\frac{27y+11}{25y}\times \frac{2\times 3y+y}{7\times 3y+y}
Cancel out y in both numerator and denominator.
\frac{27y+11}{25y}\times \frac{6y+y}{7\times 3y+y}
Multiply 2 and 3 to get 6.
\frac{27y+11}{25y}\times \frac{7y}{7\times 3y+y}
Combine 6y and y to get 7y.
\frac{27y+11}{25y}\times \frac{7y}{21y+y}
Multiply 7 and 3 to get 21.
\frac{27y+11}{25y}\times \frac{7y}{22y}
Combine 21y and y to get 22y.
\frac{27y+11}{25y}\times \frac{7}{22}
Cancel out y in both numerator and denominator.
\frac{\left(27y+11\right)\times 7}{25y\times 22}
Multiply \frac{27y+11}{25y} times \frac{7}{22} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(27y+11\right)\times 7}{550y}
Multiply 25 and 22 to get 550.
\frac{189y+77}{550y}
Use the distributive property to multiply 27y+11 by 7.