Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\frac{3^{6}a^{5}}{9^{2}a^{3}}
Use the rules of exponents to simplify the expression.
\frac{3^{6}a^{5-3}}{9^{2}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{3^{6}a^{2}}{9^{2}}
Subtract 3 from 5.
\frac{729a^{2}}{9^{2}}
Raise 3 to the power 6.
\frac{729a^{2}}{81}
Raise 9 to the power 2.
9a^{2}
Divide 729 by 81.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{3^{6}a^{2}}{9^{2}})
Cancel out a^{3} in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{729a^{2}}{9^{2}})
Calculate 3 to the power of 6 and get 729.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{729a^{2}}{81})
Calculate 9 to the power of 2 and get 81.
\frac{\mathrm{d}}{\mathrm{d}a}(9a^{2})
Divide 729a^{2} by 81 to get 9a^{2}.
2\times 9a^{2-1}
The derivative of ax^{n} is nax^{n-1}.
18a^{2-1}
Multiply 2 times 9.
18a^{1}
Subtract 1 from 2.
18a
For any term t, t^{1}=t.