Solve for m
m=9
Share
Copied to clipboard
\frac{3^{5}}{3^{-4}}=3^{m}
To multiply powers of the same base, add their exponents. Add 5 and 0 to get 5.
3^{9}=3^{m}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract -4 from 5 to get 9.
19683=3^{m}
Calculate 3 to the power of 9 and get 19683.
3^{m}=19683
Swap sides so that all variable terms are on the left hand side.
\log(3^{m})=\log(19683)
Take the logarithm of both sides of the equation.
m\log(3)=\log(19683)
The logarithm of a number raised to a power is the power times the logarithm of the number.
m=\frac{\log(19683)}{\log(3)}
Divide both sides by \log(3).
m=\log_{3}\left(19683\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}