Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. b
Tick mark Image

Similar Problems from Web Search

Share

\frac{5\times 3^{5}\times 10^{5}b^{3}}{6^{5}\times 9^{4}}
Cancel out 5\times 9^{2} in both numerator and denominator.
\frac{5\times 243\times 10^{5}b^{3}}{6^{5}\times 9^{4}}
Calculate 3 to the power of 5 and get 243.
\frac{1215\times 10^{5}b^{3}}{6^{5}\times 9^{4}}
Multiply 5 and 243 to get 1215.
\frac{1215\times 100000b^{3}}{6^{5}\times 9^{4}}
Calculate 10 to the power of 5 and get 100000.
\frac{121500000b^{3}}{6^{5}\times 9^{4}}
Multiply 1215 and 100000 to get 121500000.
\frac{121500000b^{3}}{7776\times 9^{4}}
Calculate 6 to the power of 5 and get 7776.
\frac{121500000b^{3}}{7776\times 6561}
Calculate 9 to the power of 4 and get 6561.
\frac{121500000b^{3}}{51018336}
Multiply 7776 and 6561 to get 51018336.
\frac{15625}{6561}b^{3}
Divide 121500000b^{3} by 51018336 to get \frac{15625}{6561}b^{3}.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{5\times 3^{5}\times 10^{5}b^{3}}{6^{5}\times 9^{4}})
Cancel out 5\times 9^{2} in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{5\times 243\times 10^{5}b^{3}}{6^{5}\times 9^{4}})
Calculate 3 to the power of 5 and get 243.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{1215\times 10^{5}b^{3}}{6^{5}\times 9^{4}})
Multiply 5 and 243 to get 1215.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{1215\times 100000b^{3}}{6^{5}\times 9^{4}})
Calculate 10 to the power of 5 and get 100000.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{121500000b^{3}}{6^{5}\times 9^{4}})
Multiply 1215 and 100000 to get 121500000.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{121500000b^{3}}{7776\times 9^{4}})
Calculate 6 to the power of 5 and get 7776.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{121500000b^{3}}{7776\times 6561})
Calculate 9 to the power of 4 and get 6561.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{121500000b^{3}}{51018336})
Multiply 7776 and 6561 to get 51018336.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{15625}{6561}b^{3})
Divide 121500000b^{3} by 51018336 to get \frac{15625}{6561}b^{3}.
3\times \frac{15625}{6561}b^{3-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{15625}{2187}b^{3-1}
Multiply 3 times \frac{15625}{6561}.
\frac{15625}{2187}b^{2}
Subtract 1 from 3.