Evaluate
\frac{25\sqrt[3]{23}}{3}\approx 23.698891499
Share
Copied to clipboard
\frac{\frac{1}{9}\times \left(\frac{1}{5}\right)^{-3}\sqrt[3]{23}}{3-\frac{1}{3}-2\left(-\frac{1}{2}+1\right)}
Calculate 3 to the power of -2 and get \frac{1}{9}.
\frac{\frac{1}{9}\times 125\sqrt[3]{23}}{3-\frac{1}{3}-2\left(-\frac{1}{2}+1\right)}
Calculate \frac{1}{5} to the power of -3 and get 125.
\frac{\frac{125}{9}\sqrt[3]{23}}{3-\frac{1}{3}-2\left(-\frac{1}{2}+1\right)}
Multiply \frac{1}{9} and 125 to get \frac{125}{9}.
\frac{\frac{125}{9}\sqrt[3]{23}}{\frac{8}{3}-2\left(-\frac{1}{2}+1\right)}
Subtract \frac{1}{3} from 3 to get \frac{8}{3}.
\frac{\frac{125}{9}\sqrt[3]{23}}{\frac{8}{3}-2\times \frac{1}{2}}
Add -\frac{1}{2} and 1 to get \frac{1}{2}.
\frac{\frac{125}{9}\sqrt[3]{23}}{\frac{8}{3}-1}
Multiply 2 and \frac{1}{2} to get 1.
\frac{\frac{125}{9}\sqrt[3]{23}}{\frac{5}{3}}
Subtract 1 from \frac{8}{3} to get \frac{5}{3}.
\frac{\frac{125}{9}\sqrt[3]{23}\times 3}{5}
Divide \frac{125}{9}\sqrt[3]{23} by \frac{5}{3} by multiplying \frac{125}{9}\sqrt[3]{23} by the reciprocal of \frac{5}{3}.
\frac{\frac{125}{3}\sqrt[3]{23}}{5}
Multiply \frac{125}{9} and 3 to get \frac{125}{3}.
\frac{25}{3}\sqrt[3]{23}
Divide \frac{125}{3}\sqrt[3]{23} by 5 to get \frac{25}{3}\sqrt[3]{23}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}