Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{1}{9}\times \frac{81\times 4+3}{4}\times \left(\frac{1}{9}\right)^{-1}}{\sqrt[4]{9}\sqrt[3]{9^{-\frac{3}{2}}}\sqrt{27}}
Calculate 3 to the power of -2 and get \frac{1}{9}.
\frac{\frac{1}{9}\times \frac{324+3}{4}\times \left(\frac{1}{9}\right)^{-1}}{\sqrt[4]{9}\sqrt[3]{9^{-\frac{3}{2}}}\sqrt{27}}
Multiply 81 and 4 to get 324.
\frac{\frac{1}{9}\times \frac{327}{4}\times \left(\frac{1}{9}\right)^{-1}}{\sqrt[4]{9}\sqrt[3]{9^{-\frac{3}{2}}}\sqrt{27}}
Add 324 and 3 to get 327.
\frac{\frac{109}{12}\times \left(\frac{1}{9}\right)^{-1}}{\sqrt[4]{9}\sqrt[3]{9^{-\frac{3}{2}}}\sqrt{27}}
Multiply \frac{1}{9} and \frac{327}{4} to get \frac{109}{12}.
\frac{\frac{109}{12}\times 9}{\sqrt[4]{9}\sqrt[3]{9^{-\frac{3}{2}}}\sqrt{27}}
Calculate \frac{1}{9} to the power of -1 and get 9.
\frac{\frac{327}{4}}{\sqrt[4]{9}\sqrt[3]{9^{-\frac{3}{2}}}\sqrt{27}}
Multiply \frac{109}{12} and 9 to get \frac{327}{4}.
\sqrt[4]{9}=\sqrt[4]{3^{2}}=3^{\frac{2}{4}}=3^{\frac{1}{2}}=\sqrt{3}
Rewrite \sqrt[4]{9} as \sqrt[4]{3^{2}}. Convert from radical to exponential form and cancel out 2 in the exponent. Convert back to radical form.
\frac{\frac{327}{4}}{\sqrt{3}\sqrt[3]{9^{-\frac{3}{2}}}\sqrt{27}}
Insert the obtained value back in the expression.
\frac{\frac{327}{4}}{\sqrt{3}\sqrt[3]{\frac{1}{27}}\sqrt{27}}
Calculate 9 to the power of -\frac{3}{2} and get \frac{1}{27}.
\frac{\frac{327}{4}}{\sqrt{3}\times \frac{1}{3}\sqrt{27}}
Calculate \sqrt[3]{\frac{1}{27}} and get \frac{1}{3}.
\frac{\frac{327}{4}}{\sqrt{3}\times \frac{1}{3}\times 3\sqrt{3}}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\frac{\frac{327}{4}}{\sqrt{3}\sqrt{3}}
Multiply \frac{1}{3} and 3 to get 1.
\frac{\frac{327}{4}}{3}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{327}{4\times 3}
Express \frac{\frac{327}{4}}{3} as a single fraction.
\frac{327}{12}
Multiply 4 and 3 to get 12.
\frac{109}{4}
Reduce the fraction \frac{327}{12} to lowest terms by extracting and canceling out 3.