Skip to main content
Solve for ξ
Tick mark Image
Solve for y
Tick mark Image

Similar Problems from Web Search

Share

\frac{3}{1+2i}+\frac{\xi }{1+2i}=y+2i
Divide each term of 3+\xi by 1+2i to get \frac{3}{1+2i}+\frac{\xi }{1+2i}.
\frac{3\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}+\frac{\xi }{1+2i}=y+2i
Multiply both numerator and denominator of \frac{3}{1+2i} by the complex conjugate of the denominator, 1-2i.
\frac{3-6i}{5}+\frac{\xi }{1+2i}=y+2i
Do the multiplications in \frac{3\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}.
\frac{3}{5}-\frac{6}{5}i+\frac{\xi }{1+2i}=y+2i
Divide 3-6i by 5 to get \frac{3}{5}-\frac{6}{5}i.
\frac{\xi }{1+2i}=y+2i-\left(\frac{3}{5}-\frac{6}{5}i\right)
Subtract \frac{3}{5}-\frac{6}{5}i from both sides.
\frac{\xi }{1+2i}=y+2i+\left(-\frac{3}{5}+\frac{6}{5}i\right)
Multiply -1 and \frac{3}{5}-\frac{6}{5}i to get -\frac{3}{5}+\frac{6}{5}i.
\frac{\xi }{1+2i}=y-\frac{3}{5}+\frac{16}{5}i
Do the additions in 2i+\left(-\frac{3}{5}+\frac{6}{5}i\right).
\left(\frac{1}{5}-\frac{2}{5}i\right)\xi =y+\left(-\frac{3}{5}+\frac{16}{5}i\right)
The equation is in standard form.
\frac{\left(\frac{1}{5}-\frac{2}{5}i\right)\xi }{\frac{1}{5}-\frac{2}{5}i}=\frac{y+\left(-\frac{3}{5}+\frac{16}{5}i\right)}{\frac{1}{5}-\frac{2}{5}i}
Divide both sides by \frac{1}{5}-\frac{2}{5}i.
\xi =\frac{y+\left(-\frac{3}{5}+\frac{16}{5}i\right)}{\frac{1}{5}-\frac{2}{5}i}
Dividing by \frac{1}{5}-\frac{2}{5}i undoes the multiplication by \frac{1}{5}-\frac{2}{5}i.
\xi =\left(1+2i\right)y+\left(-7+2i\right)
Divide y+\left(-\frac{3}{5}+\frac{16}{5}i\right) by \frac{1}{5}-\frac{2}{5}i.