Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(3+x\right)\left(-3x+1\right)}{\left(-3x+1\right)\left(3x+1\right)}-\frac{\left(3-x\right)\left(3x+1\right)}{\left(-3x+1\right)\left(3x+1\right)}-\frac{1+16x}{9x^{2}-1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1+3x and 1-3x is \left(-3x+1\right)\left(3x+1\right). Multiply \frac{3+x}{1+3x} times \frac{-3x+1}{-3x+1}. Multiply \frac{3-x}{1-3x} times \frac{3x+1}{3x+1}.
\frac{\left(3+x\right)\left(-3x+1\right)-\left(3-x\right)\left(3x+1\right)}{\left(-3x+1\right)\left(3x+1\right)}-\frac{1+16x}{9x^{2}-1}
Since \frac{\left(3+x\right)\left(-3x+1\right)}{\left(-3x+1\right)\left(3x+1\right)} and \frac{\left(3-x\right)\left(3x+1\right)}{\left(-3x+1\right)\left(3x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-9x+3-3x^{2}+x-9x-3+3x^{2}+x}{\left(-3x+1\right)\left(3x+1\right)}-\frac{1+16x}{9x^{2}-1}
Do the multiplications in \left(3+x\right)\left(-3x+1\right)-\left(3-x\right)\left(3x+1\right).
\frac{-16x}{\left(-3x+1\right)\left(3x+1\right)}-\frac{1+16x}{9x^{2}-1}
Combine like terms in -9x+3-3x^{2}+x-9x-3+3x^{2}+x.
\frac{-16x}{\left(-3x+1\right)\left(3x+1\right)}-\frac{1+16x}{\left(3x-1\right)\left(3x+1\right)}
Factor 9x^{2}-1.
\frac{-\left(-16\right)x}{\left(3x-1\right)\left(3x+1\right)}-\frac{1+16x}{\left(3x-1\right)\left(3x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(-3x+1\right)\left(3x+1\right) and \left(3x-1\right)\left(3x+1\right) is \left(3x-1\right)\left(3x+1\right). Multiply \frac{-16x}{\left(-3x+1\right)\left(3x+1\right)} times \frac{-1}{-1}.
\frac{-\left(-16\right)x-\left(1+16x\right)}{\left(3x-1\right)\left(3x+1\right)}
Since \frac{-\left(-16\right)x}{\left(3x-1\right)\left(3x+1\right)} and \frac{1+16x}{\left(3x-1\right)\left(3x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{16x-1-16x}{\left(3x-1\right)\left(3x+1\right)}
Do the multiplications in -\left(-16\right)x-\left(1+16x\right).
\frac{-1}{\left(3x-1\right)\left(3x+1\right)}
Combine like terms in 16x-1-16x.
\frac{-1}{9x^{2}-1}
Expand \left(3x-1\right)\left(3x+1\right).
\frac{\left(3+x\right)\left(-3x+1\right)}{\left(-3x+1\right)\left(3x+1\right)}-\frac{\left(3-x\right)\left(3x+1\right)}{\left(-3x+1\right)\left(3x+1\right)}-\frac{1+16x}{9x^{2}-1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1+3x and 1-3x is \left(-3x+1\right)\left(3x+1\right). Multiply \frac{3+x}{1+3x} times \frac{-3x+1}{-3x+1}. Multiply \frac{3-x}{1-3x} times \frac{3x+1}{3x+1}.
\frac{\left(3+x\right)\left(-3x+1\right)-\left(3-x\right)\left(3x+1\right)}{\left(-3x+1\right)\left(3x+1\right)}-\frac{1+16x}{9x^{2}-1}
Since \frac{\left(3+x\right)\left(-3x+1\right)}{\left(-3x+1\right)\left(3x+1\right)} and \frac{\left(3-x\right)\left(3x+1\right)}{\left(-3x+1\right)\left(3x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-9x+3-3x^{2}+x-9x-3+3x^{2}+x}{\left(-3x+1\right)\left(3x+1\right)}-\frac{1+16x}{9x^{2}-1}
Do the multiplications in \left(3+x\right)\left(-3x+1\right)-\left(3-x\right)\left(3x+1\right).
\frac{-16x}{\left(-3x+1\right)\left(3x+1\right)}-\frac{1+16x}{9x^{2}-1}
Combine like terms in -9x+3-3x^{2}+x-9x-3+3x^{2}+x.
\frac{-16x}{\left(-3x+1\right)\left(3x+1\right)}-\frac{1+16x}{\left(3x-1\right)\left(3x+1\right)}
Factor 9x^{2}-1.
\frac{-\left(-16\right)x}{\left(3x-1\right)\left(3x+1\right)}-\frac{1+16x}{\left(3x-1\right)\left(3x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(-3x+1\right)\left(3x+1\right) and \left(3x-1\right)\left(3x+1\right) is \left(3x-1\right)\left(3x+1\right). Multiply \frac{-16x}{\left(-3x+1\right)\left(3x+1\right)} times \frac{-1}{-1}.
\frac{-\left(-16\right)x-\left(1+16x\right)}{\left(3x-1\right)\left(3x+1\right)}
Since \frac{-\left(-16\right)x}{\left(3x-1\right)\left(3x+1\right)} and \frac{1+16x}{\left(3x-1\right)\left(3x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{16x-1-16x}{\left(3x-1\right)\left(3x+1\right)}
Do the multiplications in -\left(-16\right)x-\left(1+16x\right).
\frac{-1}{\left(3x-1\right)\left(3x+1\right)}
Combine like terms in 16x-1-16x.
\frac{-1}{9x^{2}-1}
Expand \left(3x-1\right)\left(3x+1\right).