Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3+i\right)\left(2-i\sqrt{2}\right)}{\left(2+i\sqrt{2}\right)\left(2-i\sqrt{2}\right)}
Rationalize the denominator of \frac{3+i}{2+i\sqrt{2}} by multiplying numerator and denominator by 2-i\sqrt{2}.
\frac{\left(3+i\right)\left(2-i\sqrt{2}\right)}{2^{2}-\left(i\sqrt{2}\right)^{2}}
Consider \left(2+i\sqrt{2}\right)\left(2-i\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+i\right)\left(2-i\sqrt{2}\right)}{4-\left(i\sqrt{2}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(3+i\right)\left(2-i\sqrt{2}\right)}{4-i^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(i\sqrt{2}\right)^{2}.
\frac{\left(3+i\right)\left(2-i\sqrt{2}\right)}{4-\left(-\left(\sqrt{2}\right)^{2}\right)}
Calculate i to the power of 2 and get -1.
\frac{\left(3+i\right)\left(2-i\sqrt{2}\right)}{4-\left(-2\right)}
The square of \sqrt{2} is 2.
\frac{\left(3+i\right)\left(2-i\sqrt{2}\right)}{4+2}
Multiply -1 and -2 to get 2.
\frac{\left(3+i\right)\left(2-i\sqrt{2}\right)}{6}
Add 4 and 2 to get 6.
\left(\frac{1}{2}+\frac{1}{6}i\right)\left(2-i\sqrt{2}\right)
Divide \left(3+i\right)\left(2-i\sqrt{2}\right) by 6 to get \left(\frac{1}{2}+\frac{1}{6}i\right)\left(2-i\sqrt{2}\right).
1+\frac{1}{3}i+\left(\frac{1}{6}-\frac{1}{2}i\right)\sqrt{2}
Use the distributive property to multiply \frac{1}{2}+\frac{1}{6}i by 2-i\sqrt{2}.