Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3+i\right)\left(-1-4i\right)}{\left(-1+4i\right)\left(-1-4i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -1-4i.
\frac{\left(3+i\right)\left(-1-4i\right)}{\left(-1\right)^{2}-4^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+i\right)\left(-1-4i\right)}{17}
By definition, i^{2} is -1. Calculate the denominator.
\frac{3\left(-1\right)+3\times \left(-4i\right)-i-4i^{2}}{17}
Multiply complex numbers 3+i and -1-4i like you multiply binomials.
\frac{3\left(-1\right)+3\times \left(-4i\right)-i-4\left(-1\right)}{17}
By definition, i^{2} is -1.
\frac{-3-12i-i+4}{17}
Do the multiplications in 3\left(-1\right)+3\times \left(-4i\right)-i-4\left(-1\right).
\frac{-3+4+\left(-12-1\right)i}{17}
Combine the real and imaginary parts in -3-12i-i+4.
\frac{1-13i}{17}
Do the additions in -3+4+\left(-12-1\right)i.
\frac{1}{17}-\frac{13}{17}i
Divide 1-13i by 17 to get \frac{1}{17}-\frac{13}{17}i.
Re(\frac{\left(3+i\right)\left(-1-4i\right)}{\left(-1+4i\right)\left(-1-4i\right)})
Multiply both numerator and denominator of \frac{3+i}{-1+4i} by the complex conjugate of the denominator, -1-4i.
Re(\frac{\left(3+i\right)\left(-1-4i\right)}{\left(-1\right)^{2}-4^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(3+i\right)\left(-1-4i\right)}{17})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{3\left(-1\right)+3\times \left(-4i\right)-i-4i^{2}}{17})
Multiply complex numbers 3+i and -1-4i like you multiply binomials.
Re(\frac{3\left(-1\right)+3\times \left(-4i\right)-i-4\left(-1\right)}{17})
By definition, i^{2} is -1.
Re(\frac{-3-12i-i+4}{17})
Do the multiplications in 3\left(-1\right)+3\times \left(-4i\right)-i-4\left(-1\right).
Re(\frac{-3+4+\left(-12-1\right)i}{17})
Combine the real and imaginary parts in -3-12i-i+4.
Re(\frac{1-13i}{17})
Do the additions in -3+4+\left(-12-1\right)i.
Re(\frac{1}{17}-\frac{13}{17}i)
Divide 1-13i by 17 to get \frac{1}{17}-\frac{13}{17}i.
\frac{1}{17}
The real part of \frac{1}{17}-\frac{13}{17}i is \frac{1}{17}.