Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3+8\sqrt{3}\right)\left(12-4\sqrt{3}\right)}{\left(12+4\sqrt{3}\right)\left(12-4\sqrt{3}\right)}
Rationalize the denominator of \frac{3+8\sqrt{3}}{12+4\sqrt{3}} by multiplying numerator and denominator by 12-4\sqrt{3}.
\frac{\left(3+8\sqrt{3}\right)\left(12-4\sqrt{3}\right)}{12^{2}-\left(4\sqrt{3}\right)^{2}}
Consider \left(12+4\sqrt{3}\right)\left(12-4\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+8\sqrt{3}\right)\left(12-4\sqrt{3}\right)}{144-\left(4\sqrt{3}\right)^{2}}
Calculate 12 to the power of 2 and get 144.
\frac{\left(3+8\sqrt{3}\right)\left(12-4\sqrt{3}\right)}{144-4^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(4\sqrt{3}\right)^{2}.
\frac{\left(3+8\sqrt{3}\right)\left(12-4\sqrt{3}\right)}{144-16\left(\sqrt{3}\right)^{2}}
Calculate 4 to the power of 2 and get 16.
\frac{\left(3+8\sqrt{3}\right)\left(12-4\sqrt{3}\right)}{144-16\times 3}
The square of \sqrt{3} is 3.
\frac{\left(3+8\sqrt{3}\right)\left(12-4\sqrt{3}\right)}{144-48}
Multiply 16 and 3 to get 48.
\frac{\left(3+8\sqrt{3}\right)\left(12-4\sqrt{3}\right)}{96}
Subtract 48 from 144 to get 96.
\frac{36-12\sqrt{3}+96\sqrt{3}-32\left(\sqrt{3}\right)^{2}}{96}
Apply the distributive property by multiplying each term of 3+8\sqrt{3} by each term of 12-4\sqrt{3}.
\frac{36+84\sqrt{3}-32\left(\sqrt{3}\right)^{2}}{96}
Combine -12\sqrt{3} and 96\sqrt{3} to get 84\sqrt{3}.
\frac{36+84\sqrt{3}-32\times 3}{96}
The square of \sqrt{3} is 3.
\frac{36+84\sqrt{3}-96}{96}
Multiply -32 and 3 to get -96.
\frac{-60+84\sqrt{3}}{96}
Subtract 96 from 36 to get -60.