Evaluate
\frac{63}{85}+\frac{31}{85}i\approx 0.741176471+0.364705882i
Real Part
\frac{63}{85} = 0.7411764705882353
Share
Copied to clipboard
\frac{\left(3+7i\right)\left(7-6i\right)}{\left(7+6i\right)\left(7-6i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 7-6i.
\frac{\left(3+7i\right)\left(7-6i\right)}{7^{2}-6^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+7i\right)\left(7-6i\right)}{85}
By definition, i^{2} is -1. Calculate the denominator.
\frac{3\times 7+3\times \left(-6i\right)+7i\times 7+7\left(-6\right)i^{2}}{85}
Multiply complex numbers 3+7i and 7-6i like you multiply binomials.
\frac{3\times 7+3\times \left(-6i\right)+7i\times 7+7\left(-6\right)\left(-1\right)}{85}
By definition, i^{2} is -1.
\frac{21-18i+49i+42}{85}
Do the multiplications in 3\times 7+3\times \left(-6i\right)+7i\times 7+7\left(-6\right)\left(-1\right).
\frac{21+42+\left(-18+49\right)i}{85}
Combine the real and imaginary parts in 21-18i+49i+42.
\frac{63+31i}{85}
Do the additions in 21+42+\left(-18+49\right)i.
\frac{63}{85}+\frac{31}{85}i
Divide 63+31i by 85 to get \frac{63}{85}+\frac{31}{85}i.
Re(\frac{\left(3+7i\right)\left(7-6i\right)}{\left(7+6i\right)\left(7-6i\right)})
Multiply both numerator and denominator of \frac{3+7i}{7+6i} by the complex conjugate of the denominator, 7-6i.
Re(\frac{\left(3+7i\right)\left(7-6i\right)}{7^{2}-6^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(3+7i\right)\left(7-6i\right)}{85})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{3\times 7+3\times \left(-6i\right)+7i\times 7+7\left(-6\right)i^{2}}{85})
Multiply complex numbers 3+7i and 7-6i like you multiply binomials.
Re(\frac{3\times 7+3\times \left(-6i\right)+7i\times 7+7\left(-6\right)\left(-1\right)}{85})
By definition, i^{2} is -1.
Re(\frac{21-18i+49i+42}{85})
Do the multiplications in 3\times 7+3\times \left(-6i\right)+7i\times 7+7\left(-6\right)\left(-1\right).
Re(\frac{21+42+\left(-18+49\right)i}{85})
Combine the real and imaginary parts in 21-18i+49i+42.
Re(\frac{63+31i}{85})
Do the additions in 21+42+\left(-18+49\right)i.
Re(\frac{63}{85}+\frac{31}{85}i)
Divide 63+31i by 85 to get \frac{63}{85}+\frac{31}{85}i.
\frac{63}{85}
The real part of \frac{63}{85}+\frac{31}{85}i is \frac{63}{85}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}