Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3+5i\right)\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1+2i.
\frac{\left(3+5i\right)\left(1+2i\right)}{1^{2}-2^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+5i\right)\left(1+2i\right)}{5}
By definition, i^{2} is -1. Calculate the denominator.
\frac{3\times 1+3\times \left(2i\right)+5i\times 1+5\times 2i^{2}}{5}
Multiply complex numbers 3+5i and 1+2i like you multiply binomials.
\frac{3\times 1+3\times \left(2i\right)+5i\times 1+5\times 2\left(-1\right)}{5}
By definition, i^{2} is -1.
\frac{3+6i+5i-10}{5}
Do the multiplications in 3\times 1+3\times \left(2i\right)+5i\times 1+5\times 2\left(-1\right).
\frac{3-10+\left(6+5\right)i}{5}
Combine the real and imaginary parts in 3+6i+5i-10.
\frac{-7+11i}{5}
Do the additions in 3-10+\left(6+5\right)i.
-\frac{7}{5}+\frac{11}{5}i
Divide -7+11i by 5 to get -\frac{7}{5}+\frac{11}{5}i.
Re(\frac{\left(3+5i\right)\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)})
Multiply both numerator and denominator of \frac{3+5i}{1-2i} by the complex conjugate of the denominator, 1+2i.
Re(\frac{\left(3+5i\right)\left(1+2i\right)}{1^{2}-2^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(3+5i\right)\left(1+2i\right)}{5})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{3\times 1+3\times \left(2i\right)+5i\times 1+5\times 2i^{2}}{5})
Multiply complex numbers 3+5i and 1+2i like you multiply binomials.
Re(\frac{3\times 1+3\times \left(2i\right)+5i\times 1+5\times 2\left(-1\right)}{5})
By definition, i^{2} is -1.
Re(\frac{3+6i+5i-10}{5})
Do the multiplications in 3\times 1+3\times \left(2i\right)+5i\times 1+5\times 2\left(-1\right).
Re(\frac{3-10+\left(6+5\right)i}{5})
Combine the real and imaginary parts in 3+6i+5i-10.
Re(\frac{-7+11i}{5})
Do the additions in 3-10+\left(6+5\right)i.
Re(-\frac{7}{5}+\frac{11}{5}i)
Divide -7+11i by 5 to get -\frac{7}{5}+\frac{11}{5}i.
-\frac{7}{5}
The real part of -\frac{7}{5}+\frac{11}{5}i is -\frac{7}{5}.