Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{15\sqrt{5}b+15b-3\sqrt{5}-25}{15\left(ehn+1\right)}\text{, }&n=0\text{ or }h\neq -\frac{1}{en}\\a\in \mathrm{C}\text{, }&b=\frac{11\sqrt{5}}{30}-\frac{1}{6}\text{ and }h=-\frac{1}{en}\text{ and }n\neq 0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{15\sqrt{5}b+15b-3\sqrt{5}-25}{15\left(ehn+1\right)}\text{, }&n=0\text{ or }h\neq -\frac{1}{en}\\a\in \mathrm{R}\text{, }&b=\frac{11\sqrt{5}}{30}-\frac{1}{6}\text{ and }h=-\frac{1}{en}\text{ and }n\neq 0\end{matrix}\right.
Solve for b
b=-\frac{\left(\sqrt{5}-1\right)\left(15eahn+15a-3\sqrt{5}-25\right)}{60}
Share
Copied to clipboard
\frac{\left(3+5\sqrt{5}\right)\sqrt{5}}{3\left(\sqrt{5}\right)^{2}}=a+b\sqrt{5}+hena+b
Rationalize the denominator of \frac{3+5\sqrt{5}}{3\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\left(3+5\sqrt{5}\right)\sqrt{5}}{3\times 5}=a+b\sqrt{5}+hena+b
The square of \sqrt{5} is 5.
\frac{\left(3+5\sqrt{5}\right)\sqrt{5}}{15}=a+b\sqrt{5}+hena+b
Multiply 3 and 5 to get 15.
\frac{3\sqrt{5}+5\left(\sqrt{5}\right)^{2}}{15}=a+b\sqrt{5}+hena+b
Use the distributive property to multiply 3+5\sqrt{5} by \sqrt{5}.
\frac{3\sqrt{5}+5\times 5}{15}=a+b\sqrt{5}+hena+b
The square of \sqrt{5} is 5.
\frac{3\sqrt{5}+25}{15}=a+b\sqrt{5}+hena+b
Multiply 5 and 5 to get 25.
\frac{1}{5}\sqrt{5}+\frac{5}{3}=a+b\sqrt{5}+hena+b
Divide each term of 3\sqrt{5}+25 by 15 to get \frac{1}{5}\sqrt{5}+\frac{5}{3}.
a+b\sqrt{5}+hena+b=\frac{1}{5}\sqrt{5}+\frac{5}{3}
Swap sides so that all variable terms are on the left hand side.
a+hena+b=\frac{1}{5}\sqrt{5}+\frac{5}{3}-b\sqrt{5}
Subtract b\sqrt{5} from both sides.
a+hena=\frac{1}{5}\sqrt{5}+\frac{5}{3}-b\sqrt{5}-b
Subtract b from both sides.
eahn+a=-\sqrt{5}b-b+\frac{1}{5}\sqrt{5}+\frac{5}{3}
Reorder the terms.
\left(ehn+1\right)a=-\sqrt{5}b-b+\frac{1}{5}\sqrt{5}+\frac{5}{3}
Combine all terms containing a.
\left(ehn+1\right)a=-\sqrt{5}b-b+\frac{\sqrt{5}}{5}+\frac{5}{3}
The equation is in standard form.
\frac{\left(ehn+1\right)a}{ehn+1}=\frac{-\sqrt{5}b-b+\frac{\sqrt{5}}{5}+\frac{5}{3}}{ehn+1}
Divide both sides by 1+neh.
a=\frac{-\sqrt{5}b-b+\frac{\sqrt{5}}{5}+\frac{5}{3}}{ehn+1}
Dividing by 1+neh undoes the multiplication by 1+neh.
a=\frac{-15\sqrt{5}b-15b+3\sqrt{5}+25}{15\left(ehn+1\right)}
Divide -\sqrt{5}b-b+\frac{\sqrt{5}}{5}+\frac{5}{3} by 1+neh.
\frac{\left(3+5\sqrt{5}\right)\sqrt{5}}{3\left(\sqrt{5}\right)^{2}}=a+b\sqrt{5}+hena+b
Rationalize the denominator of \frac{3+5\sqrt{5}}{3\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\left(3+5\sqrt{5}\right)\sqrt{5}}{3\times 5}=a+b\sqrt{5}+hena+b
The square of \sqrt{5} is 5.
\frac{\left(3+5\sqrt{5}\right)\sqrt{5}}{15}=a+b\sqrt{5}+hena+b
Multiply 3 and 5 to get 15.
\frac{3\sqrt{5}+5\left(\sqrt{5}\right)^{2}}{15}=a+b\sqrt{5}+hena+b
Use the distributive property to multiply 3+5\sqrt{5} by \sqrt{5}.
\frac{3\sqrt{5}+5\times 5}{15}=a+b\sqrt{5}+hena+b
The square of \sqrt{5} is 5.
\frac{3\sqrt{5}+25}{15}=a+b\sqrt{5}+hena+b
Multiply 5 and 5 to get 25.
\frac{1}{5}\sqrt{5}+\frac{5}{3}=a+b\sqrt{5}+hena+b
Divide each term of 3\sqrt{5}+25 by 15 to get \frac{1}{5}\sqrt{5}+\frac{5}{3}.
a+b\sqrt{5}+hena+b=\frac{1}{5}\sqrt{5}+\frac{5}{3}
Swap sides so that all variable terms are on the left hand side.
a+hena+b=\frac{1}{5}\sqrt{5}+\frac{5}{3}-b\sqrt{5}
Subtract b\sqrt{5} from both sides.
a+hena=\frac{1}{5}\sqrt{5}+\frac{5}{3}-b\sqrt{5}-b
Subtract b from both sides.
eahn+a=-\sqrt{5}b-b+\frac{1}{5}\sqrt{5}+\frac{5}{3}
Reorder the terms.
\left(ehn+1\right)a=-\sqrt{5}b-b+\frac{1}{5}\sqrt{5}+\frac{5}{3}
Combine all terms containing a.
\left(ehn+1\right)a=-\sqrt{5}b-b+\frac{\sqrt{5}}{5}+\frac{5}{3}
The equation is in standard form.
\frac{\left(ehn+1\right)a}{ehn+1}=\frac{-\sqrt{5}b-b+\frac{\sqrt{5}}{5}+\frac{5}{3}}{ehn+1}
Divide both sides by 1+hen.
a=\frac{-\sqrt{5}b-b+\frac{\sqrt{5}}{5}+\frac{5}{3}}{ehn+1}
Dividing by 1+hen undoes the multiplication by 1+hen.
a=\frac{-15\sqrt{5}b-15b+3\sqrt{5}+25}{15\left(ehn+1\right)}
Divide -\sqrt{5}b-b+\frac{\sqrt{5}}{5}+\frac{5}{3} by 1+hen.
\frac{\left(3+5\sqrt{5}\right)\sqrt{5}}{3\left(\sqrt{5}\right)^{2}}=a+b\sqrt{5}+hena+b
Rationalize the denominator of \frac{3+5\sqrt{5}}{3\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\left(3+5\sqrt{5}\right)\sqrt{5}}{3\times 5}=a+b\sqrt{5}+hena+b
The square of \sqrt{5} is 5.
\frac{\left(3+5\sqrt{5}\right)\sqrt{5}}{15}=a+b\sqrt{5}+hena+b
Multiply 3 and 5 to get 15.
\frac{3\sqrt{5}+5\left(\sqrt{5}\right)^{2}}{15}=a+b\sqrt{5}+hena+b
Use the distributive property to multiply 3+5\sqrt{5} by \sqrt{5}.
\frac{3\sqrt{5}+5\times 5}{15}=a+b\sqrt{5}+hena+b
The square of \sqrt{5} is 5.
\frac{3\sqrt{5}+25}{15}=a+b\sqrt{5}+hena+b
Multiply 5 and 5 to get 25.
\frac{1}{5}\sqrt{5}+\frac{5}{3}=a+b\sqrt{5}+hena+b
Divide each term of 3\sqrt{5}+25 by 15 to get \frac{1}{5}\sqrt{5}+\frac{5}{3}.
a+b\sqrt{5}+hena+b=\frac{1}{5}\sqrt{5}+\frac{5}{3}
Swap sides so that all variable terms are on the left hand side.
b\sqrt{5}+hena+b=\frac{1}{5}\sqrt{5}+\frac{5}{3}-a
Subtract a from both sides.
b\sqrt{5}+b=\frac{1}{5}\sqrt{5}+\frac{5}{3}-a-hena
Subtract hena from both sides.
\sqrt{5}b+b=-eahn-a+\frac{1}{5}\sqrt{5}+\frac{5}{3}
Reorder the terms.
\left(\sqrt{5}+1\right)b=-eahn-a+\frac{1}{5}\sqrt{5}+\frac{5}{3}
Combine all terms containing b.
\left(\sqrt{5}+1\right)b=-eahn-a+\frac{\sqrt{5}}{5}+\frac{5}{3}
The equation is in standard form.
\frac{\left(\sqrt{5}+1\right)b}{\sqrt{5}+1}=\frac{-eahn-a+\frac{\sqrt{5}}{5}+\frac{5}{3}}{\sqrt{5}+1}
Divide both sides by \sqrt{5}+1.
b=\frac{-eahn-a+\frac{\sqrt{5}}{5}+\frac{5}{3}}{\sqrt{5}+1}
Dividing by \sqrt{5}+1 undoes the multiplication by \sqrt{5}+1.
b=\frac{\left(\sqrt{5}-1\right)\left(-15eahn-15a+3\sqrt{5}+25\right)}{60}
Divide -a+\frac{\sqrt{5}}{5}-enha+\frac{5}{3} by \sqrt{5}+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}