Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

3+4i=\left(3-i\right)\left(z-2\right)
Variable z cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by z-2.
3+4i=\left(3-i\right)z+\left(-6+2i\right)
Use the distributive property to multiply 3-i by z-2.
\left(3-i\right)z+\left(-6+2i\right)=3+4i
Swap sides so that all variable terms are on the left hand side.
\left(3-i\right)z=3+4i-\left(-6+2i\right)
Subtract -6+2i from both sides.
\left(3-i\right)z=9+2i
Subtract -6+2i from 3+4i to get 9+2i.
z=\frac{9+2i}{3-i}
Divide both sides by 3-i.
z=\frac{\left(9+2i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}
Multiply both numerator and denominator of \frac{9+2i}{3-i} by the complex conjugate of the denominator, 3+i.
z=\frac{25+15i}{10}
Do the multiplications in \frac{\left(9+2i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}.
z=\frac{5}{2}+\frac{3}{2}i
Divide 25+15i by 10 to get \frac{5}{2}+\frac{3}{2}i.