Solve for z
z=\frac{5}{2}+\frac{3}{2}i=2.5+1.5i
Share
Copied to clipboard
3+4i=\left(3-i\right)\left(z-2\right)
Variable z cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by z-2.
3+4i=\left(3-i\right)z+\left(-6+2i\right)
Use the distributive property to multiply 3-i by z-2.
\left(3-i\right)z+\left(-6+2i\right)=3+4i
Swap sides so that all variable terms are on the left hand side.
\left(3-i\right)z=3+4i-\left(-6+2i\right)
Subtract -6+2i from both sides.
\left(3-i\right)z=9+2i
Subtract -6+2i from 3+4i to get 9+2i.
z=\frac{9+2i}{3-i}
Divide both sides by 3-i.
z=\frac{\left(9+2i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}
Multiply both numerator and denominator of \frac{9+2i}{3-i} by the complex conjugate of the denominator, 3+i.
z=\frac{25+15i}{10}
Do the multiplications in \frac{\left(9+2i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}.
z=\frac{5}{2}+\frac{3}{2}i
Divide 25+15i by 10 to get \frac{5}{2}+\frac{3}{2}i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}