Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

3+4i+\frac{4-i}{3+2i}
Anything divided by one gives itself.
3+4i+\frac{\left(4-i\right)\left(3-2i\right)}{\left(3+2i\right)\left(3-2i\right)}
Multiply both numerator and denominator of \frac{4-i}{3+2i} by the complex conjugate of the denominator, 3-2i.
3+4i+\frac{10-11i}{13}
Do the multiplications in \frac{\left(4-i\right)\left(3-2i\right)}{\left(3+2i\right)\left(3-2i\right)}.
3+4i+\left(\frac{10}{13}-\frac{11}{13}i\right)
Divide 10-11i by 13 to get \frac{10}{13}-\frac{11}{13}i.
\frac{49}{13}+\frac{41}{13}i
Add 3+4i and \frac{10}{13}-\frac{11}{13}i to get \frac{49}{13}+\frac{41}{13}i.
Re(3+4i+\frac{4-i}{3+2i})
Anything divided by one gives itself.
Re(3+4i+\frac{\left(4-i\right)\left(3-2i\right)}{\left(3+2i\right)\left(3-2i\right)})
Multiply both numerator and denominator of \frac{4-i}{3+2i} by the complex conjugate of the denominator, 3-2i.
Re(3+4i+\frac{10-11i}{13})
Do the multiplications in \frac{\left(4-i\right)\left(3-2i\right)}{\left(3+2i\right)\left(3-2i\right)}.
Re(3+4i+\left(\frac{10}{13}-\frac{11}{13}i\right))
Divide 10-11i by 13 to get \frac{10}{13}-\frac{11}{13}i.
Re(\frac{49}{13}+\frac{41}{13}i)
Add 3+4i and \frac{10}{13}-\frac{11}{13}i to get \frac{49}{13}+\frac{41}{13}i.
\frac{49}{13}
The real part of \frac{49}{13}+\frac{41}{13}i is \frac{49}{13}.