Evaluate
\frac{49}{13}+\frac{41}{13}i\approx 3.769230769+3.153846154i
Real Part
\frac{49}{13} = 3\frac{10}{13} = 3.769230769230769
Share
Copied to clipboard
3+4i+\frac{4-i}{3+2i}
Anything divided by one gives itself.
3+4i+\frac{\left(4-i\right)\left(3-2i\right)}{\left(3+2i\right)\left(3-2i\right)}
Multiply both numerator and denominator of \frac{4-i}{3+2i} by the complex conjugate of the denominator, 3-2i.
3+4i+\frac{10-11i}{13}
Do the multiplications in \frac{\left(4-i\right)\left(3-2i\right)}{\left(3+2i\right)\left(3-2i\right)}.
3+4i+\left(\frac{10}{13}-\frac{11}{13}i\right)
Divide 10-11i by 13 to get \frac{10}{13}-\frac{11}{13}i.
\frac{49}{13}+\frac{41}{13}i
Add 3+4i and \frac{10}{13}-\frac{11}{13}i to get \frac{49}{13}+\frac{41}{13}i.
Re(3+4i+\frac{4-i}{3+2i})
Anything divided by one gives itself.
Re(3+4i+\frac{\left(4-i\right)\left(3-2i\right)}{\left(3+2i\right)\left(3-2i\right)})
Multiply both numerator and denominator of \frac{4-i}{3+2i} by the complex conjugate of the denominator, 3-2i.
Re(3+4i+\frac{10-11i}{13})
Do the multiplications in \frac{\left(4-i\right)\left(3-2i\right)}{\left(3+2i\right)\left(3-2i\right)}.
Re(3+4i+\left(\frac{10}{13}-\frac{11}{13}i\right))
Divide 10-11i by 13 to get \frac{10}{13}-\frac{11}{13}i.
Re(\frac{49}{13}+\frac{41}{13}i)
Add 3+4i and \frac{10}{13}-\frac{11}{13}i to get \frac{49}{13}+\frac{41}{13}i.
\frac{49}{13}
The real part of \frac{49}{13}+\frac{41}{13}i is \frac{49}{13}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}