Evaluate
\frac{1}{x^{2}-4}
Expand
\frac{1}{x^{2}-4}
Graph
Share
Copied to clipboard
\frac{3+2x}{x-2}-\frac{2x^{3}+9x+20}{x\left(x-2\right)\left(x+2\right)}-\frac{5}{x}-\frac{2}{x+2}
Factor x^{3}-4x.
\frac{\left(3+2x\right)x\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}-\frac{2x^{3}+9x+20}{x\left(x-2\right)\left(x+2\right)}-\frac{5}{x}-\frac{2}{x+2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and x\left(x-2\right)\left(x+2\right) is x\left(x-2\right)\left(x+2\right). Multiply \frac{3+2x}{x-2} times \frac{x\left(x+2\right)}{x\left(x+2\right)}.
\frac{\left(3+2x\right)x\left(x+2\right)-\left(2x^{3}+9x+20\right)}{x\left(x-2\right)\left(x+2\right)}-\frac{5}{x}-\frac{2}{x+2}
Since \frac{\left(3+2x\right)x\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)} and \frac{2x^{3}+9x+20}{x\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{2}+6x+2x^{3}+4x^{2}-2x^{3}-9x-20}{x\left(x-2\right)\left(x+2\right)}-\frac{5}{x}-\frac{2}{x+2}
Do the multiplications in \left(3+2x\right)x\left(x+2\right)-\left(2x^{3}+9x+20\right).
\frac{7x^{2}-3x-20}{x\left(x-2\right)\left(x+2\right)}-\frac{5}{x}-\frac{2}{x+2}
Combine like terms in 3x^{2}+6x+2x^{3}+4x^{2}-2x^{3}-9x-20.
\frac{7x^{2}-3x-20}{x\left(x-2\right)\left(x+2\right)}-\frac{5\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}-\frac{2}{x+2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-2\right)\left(x+2\right) and x is x\left(x-2\right)\left(x+2\right). Multiply \frac{5}{x} times \frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}.
\frac{7x^{2}-3x-20-5\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}-\frac{2}{x+2}
Since \frac{7x^{2}-3x-20}{x\left(x-2\right)\left(x+2\right)} and \frac{5\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{7x^{2}-3x-20-5x^{2}-10x+10x+20}{x\left(x-2\right)\left(x+2\right)}-\frac{2}{x+2}
Do the multiplications in 7x^{2}-3x-20-5\left(x-2\right)\left(x+2\right).
\frac{2x^{2}-3x}{x\left(x-2\right)\left(x+2\right)}-\frac{2}{x+2}
Combine like terms in 7x^{2}-3x-20-5x^{2}-10x+10x+20.
\frac{x\left(2x-3\right)}{x\left(x-2\right)\left(x+2\right)}-\frac{2}{x+2}
Factor the expressions that are not already factored in \frac{2x^{2}-3x}{x\left(x-2\right)\left(x+2\right)}.
\frac{2x-3}{\left(x-2\right)\left(x+2\right)}-\frac{2}{x+2}
Cancel out x in both numerator and denominator.
\frac{2x-3}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+2\right) and x+2 is \left(x-2\right)\left(x+2\right). Multiply \frac{2}{x+2} times \frac{x-2}{x-2}.
\frac{2x-3-2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}
Since \frac{2x-3}{\left(x-2\right)\left(x+2\right)} and \frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x-3-2x+4}{\left(x-2\right)\left(x+2\right)}
Do the multiplications in 2x-3-2\left(x-2\right).
\frac{1}{\left(x-2\right)\left(x+2\right)}
Combine like terms in 2x-3-2x+4.
\frac{1}{x^{2}-4}
Expand \left(x-2\right)\left(x+2\right).
\frac{3+2x}{x-2}-\frac{2x^{3}+9x+20}{x\left(x-2\right)\left(x+2\right)}-\frac{5}{x}-\frac{2}{x+2}
Factor x^{3}-4x.
\frac{\left(3+2x\right)x\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}-\frac{2x^{3}+9x+20}{x\left(x-2\right)\left(x+2\right)}-\frac{5}{x}-\frac{2}{x+2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and x\left(x-2\right)\left(x+2\right) is x\left(x-2\right)\left(x+2\right). Multiply \frac{3+2x}{x-2} times \frac{x\left(x+2\right)}{x\left(x+2\right)}.
\frac{\left(3+2x\right)x\left(x+2\right)-\left(2x^{3}+9x+20\right)}{x\left(x-2\right)\left(x+2\right)}-\frac{5}{x}-\frac{2}{x+2}
Since \frac{\left(3+2x\right)x\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)} and \frac{2x^{3}+9x+20}{x\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{2}+6x+2x^{3}+4x^{2}-2x^{3}-9x-20}{x\left(x-2\right)\left(x+2\right)}-\frac{5}{x}-\frac{2}{x+2}
Do the multiplications in \left(3+2x\right)x\left(x+2\right)-\left(2x^{3}+9x+20\right).
\frac{7x^{2}-3x-20}{x\left(x-2\right)\left(x+2\right)}-\frac{5}{x}-\frac{2}{x+2}
Combine like terms in 3x^{2}+6x+2x^{3}+4x^{2}-2x^{3}-9x-20.
\frac{7x^{2}-3x-20}{x\left(x-2\right)\left(x+2\right)}-\frac{5\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}-\frac{2}{x+2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-2\right)\left(x+2\right) and x is x\left(x-2\right)\left(x+2\right). Multiply \frac{5}{x} times \frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}.
\frac{7x^{2}-3x-20-5\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}-\frac{2}{x+2}
Since \frac{7x^{2}-3x-20}{x\left(x-2\right)\left(x+2\right)} and \frac{5\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{7x^{2}-3x-20-5x^{2}-10x+10x+20}{x\left(x-2\right)\left(x+2\right)}-\frac{2}{x+2}
Do the multiplications in 7x^{2}-3x-20-5\left(x-2\right)\left(x+2\right).
\frac{2x^{2}-3x}{x\left(x-2\right)\left(x+2\right)}-\frac{2}{x+2}
Combine like terms in 7x^{2}-3x-20-5x^{2}-10x+10x+20.
\frac{x\left(2x-3\right)}{x\left(x-2\right)\left(x+2\right)}-\frac{2}{x+2}
Factor the expressions that are not already factored in \frac{2x^{2}-3x}{x\left(x-2\right)\left(x+2\right)}.
\frac{2x-3}{\left(x-2\right)\left(x+2\right)}-\frac{2}{x+2}
Cancel out x in both numerator and denominator.
\frac{2x-3}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+2\right) and x+2 is \left(x-2\right)\left(x+2\right). Multiply \frac{2}{x+2} times \frac{x-2}{x-2}.
\frac{2x-3-2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}
Since \frac{2x-3}{\left(x-2\right)\left(x+2\right)} and \frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x-3-2x+4}{\left(x-2\right)\left(x+2\right)}
Do the multiplications in 2x-3-2\left(x-2\right).
\frac{1}{\left(x-2\right)\left(x+2\right)}
Combine like terms in 2x-3-2x+4.
\frac{1}{x^{2}-4}
Expand \left(x-2\right)\left(x+2\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}