Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3+2i\right)\left(5+i\right)}{\left(5-i\right)\left(5+i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 5+i.
\frac{\left(3+2i\right)\left(5+i\right)}{5^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+2i\right)\left(5+i\right)}{26}
By definition, i^{2} is -1. Calculate the denominator.
\frac{3\times 5+3i+2i\times 5+2i^{2}}{26}
Multiply complex numbers 3+2i and 5+i like you multiply binomials.
\frac{3\times 5+3i+2i\times 5+2\left(-1\right)}{26}
By definition, i^{2} is -1.
\frac{15+3i+10i-2}{26}
Do the multiplications in 3\times 5+3i+2i\times 5+2\left(-1\right).
\frac{15-2+\left(3+10\right)i}{26}
Combine the real and imaginary parts in 15+3i+10i-2.
\frac{13+13i}{26}
Do the additions in 15-2+\left(3+10\right)i.
\frac{1}{2}+\frac{1}{2}i
Divide 13+13i by 26 to get \frac{1}{2}+\frac{1}{2}i.
Re(\frac{\left(3+2i\right)\left(5+i\right)}{\left(5-i\right)\left(5+i\right)})
Multiply both numerator and denominator of \frac{3+2i}{5-i} by the complex conjugate of the denominator, 5+i.
Re(\frac{\left(3+2i\right)\left(5+i\right)}{5^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(3+2i\right)\left(5+i\right)}{26})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{3\times 5+3i+2i\times 5+2i^{2}}{26})
Multiply complex numbers 3+2i and 5+i like you multiply binomials.
Re(\frac{3\times 5+3i+2i\times 5+2\left(-1\right)}{26})
By definition, i^{2} is -1.
Re(\frac{15+3i+10i-2}{26})
Do the multiplications in 3\times 5+3i+2i\times 5+2\left(-1\right).
Re(\frac{15-2+\left(3+10\right)i}{26})
Combine the real and imaginary parts in 15+3i+10i-2.
Re(\frac{13+13i}{26})
Do the additions in 15-2+\left(3+10\right)i.
Re(\frac{1}{2}+\frac{1}{2}i)
Divide 13+13i by 26 to get \frac{1}{2}+\frac{1}{2}i.
\frac{1}{2}
The real part of \frac{1}{2}+\frac{1}{2}i is \frac{1}{2}.