Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3+2i\right)\left(5+3i\right)}{\left(5-3i\right)\left(5+3i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 5+3i.
\frac{\left(3+2i\right)\left(5+3i\right)}{5^{2}-3^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+2i\right)\left(5+3i\right)}{34}
By definition, i^{2} is -1. Calculate the denominator.
\frac{3\times 5+3\times \left(3i\right)+2i\times 5+2\times 3i^{2}}{34}
Multiply complex numbers 3+2i and 5+3i like you multiply binomials.
\frac{3\times 5+3\times \left(3i\right)+2i\times 5+2\times 3\left(-1\right)}{34}
By definition, i^{2} is -1.
\frac{15+9i+10i-6}{34}
Do the multiplications in 3\times 5+3\times \left(3i\right)+2i\times 5+2\times 3\left(-1\right).
\frac{15-6+\left(9+10\right)i}{34}
Combine the real and imaginary parts in 15+9i+10i-6.
\frac{9+19i}{34}
Do the additions in 15-6+\left(9+10\right)i.
\frac{9}{34}+\frac{19}{34}i
Divide 9+19i by 34 to get \frac{9}{34}+\frac{19}{34}i.
Re(\frac{\left(3+2i\right)\left(5+3i\right)}{\left(5-3i\right)\left(5+3i\right)})
Multiply both numerator and denominator of \frac{3+2i}{5-3i} by the complex conjugate of the denominator, 5+3i.
Re(\frac{\left(3+2i\right)\left(5+3i\right)}{5^{2}-3^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(3+2i\right)\left(5+3i\right)}{34})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{3\times 5+3\times \left(3i\right)+2i\times 5+2\times 3i^{2}}{34})
Multiply complex numbers 3+2i and 5+3i like you multiply binomials.
Re(\frac{3\times 5+3\times \left(3i\right)+2i\times 5+2\times 3\left(-1\right)}{34})
By definition, i^{2} is -1.
Re(\frac{15+9i+10i-6}{34})
Do the multiplications in 3\times 5+3\times \left(3i\right)+2i\times 5+2\times 3\left(-1\right).
Re(\frac{15-6+\left(9+10\right)i}{34})
Combine the real and imaginary parts in 15+9i+10i-6.
Re(\frac{9+19i}{34})
Do the additions in 15-6+\left(9+10\right)i.
Re(\frac{9}{34}+\frac{19}{34}i)
Divide 9+19i by 34 to get \frac{9}{34}+\frac{19}{34}i.
\frac{9}{34}
The real part of \frac{9}{34}+\frac{19}{34}i is \frac{9}{34}.