Evaluate
\frac{11}{29}+\frac{16}{29}i\approx 0.379310345+0.551724138i
Real Part
\frac{11}{29} = 0.3793103448275862
Share
Copied to clipboard
\frac{\left(3+2i\right)\left(5+2i\right)}{\left(5-2i\right)\left(5+2i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 5+2i.
\frac{\left(3+2i\right)\left(5+2i\right)}{5^{2}-2^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+2i\right)\left(5+2i\right)}{29}
By definition, i^{2} is -1. Calculate the denominator.
\frac{3\times 5+3\times \left(2i\right)+2i\times 5+2\times 2i^{2}}{29}
Multiply complex numbers 3+2i and 5+2i like you multiply binomials.
\frac{3\times 5+3\times \left(2i\right)+2i\times 5+2\times 2\left(-1\right)}{29}
By definition, i^{2} is -1.
\frac{15+6i+10i-4}{29}
Do the multiplications in 3\times 5+3\times \left(2i\right)+2i\times 5+2\times 2\left(-1\right).
\frac{15-4+\left(6+10\right)i}{29}
Combine the real and imaginary parts in 15+6i+10i-4.
\frac{11+16i}{29}
Do the additions in 15-4+\left(6+10\right)i.
\frac{11}{29}+\frac{16}{29}i
Divide 11+16i by 29 to get \frac{11}{29}+\frac{16}{29}i.
Re(\frac{\left(3+2i\right)\left(5+2i\right)}{\left(5-2i\right)\left(5+2i\right)})
Multiply both numerator and denominator of \frac{3+2i}{5-2i} by the complex conjugate of the denominator, 5+2i.
Re(\frac{\left(3+2i\right)\left(5+2i\right)}{5^{2}-2^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(3+2i\right)\left(5+2i\right)}{29})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{3\times 5+3\times \left(2i\right)+2i\times 5+2\times 2i^{2}}{29})
Multiply complex numbers 3+2i and 5+2i like you multiply binomials.
Re(\frac{3\times 5+3\times \left(2i\right)+2i\times 5+2\times 2\left(-1\right)}{29})
By definition, i^{2} is -1.
Re(\frac{15+6i+10i-4}{29})
Do the multiplications in 3\times 5+3\times \left(2i\right)+2i\times 5+2\times 2\left(-1\right).
Re(\frac{15-4+\left(6+10\right)i}{29})
Combine the real and imaginary parts in 15+6i+10i-4.
Re(\frac{11+16i}{29})
Do the additions in 15-4+\left(6+10\right)i.
Re(\frac{11}{29}+\frac{16}{29}i)
Divide 11+16i by 29 to get \frac{11}{29}+\frac{16}{29}i.
\frac{11}{29}
The real part of \frac{11}{29}+\frac{16}{29}i is \frac{11}{29}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}