Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3+2i\right)\left(5+2i\right)}{\left(5-2i\right)\left(5+2i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 5+2i.
\frac{\left(3+2i\right)\left(5+2i\right)}{5^{2}-2^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+2i\right)\left(5+2i\right)}{29}
By definition, i^{2} is -1. Calculate the denominator.
\frac{3\times 5+3\times \left(2i\right)+2i\times 5+2\times 2i^{2}}{29}
Multiply complex numbers 3+2i and 5+2i like you multiply binomials.
\frac{3\times 5+3\times \left(2i\right)+2i\times 5+2\times 2\left(-1\right)}{29}
By definition, i^{2} is -1.
\frac{15+6i+10i-4}{29}
Do the multiplications in 3\times 5+3\times \left(2i\right)+2i\times 5+2\times 2\left(-1\right).
\frac{15-4+\left(6+10\right)i}{29}
Combine the real and imaginary parts in 15+6i+10i-4.
\frac{11+16i}{29}
Do the additions in 15-4+\left(6+10\right)i.
\frac{11}{29}+\frac{16}{29}i
Divide 11+16i by 29 to get \frac{11}{29}+\frac{16}{29}i.
Re(\frac{\left(3+2i\right)\left(5+2i\right)}{\left(5-2i\right)\left(5+2i\right)})
Multiply both numerator and denominator of \frac{3+2i}{5-2i} by the complex conjugate of the denominator, 5+2i.
Re(\frac{\left(3+2i\right)\left(5+2i\right)}{5^{2}-2^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(3+2i\right)\left(5+2i\right)}{29})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{3\times 5+3\times \left(2i\right)+2i\times 5+2\times 2i^{2}}{29})
Multiply complex numbers 3+2i and 5+2i like you multiply binomials.
Re(\frac{3\times 5+3\times \left(2i\right)+2i\times 5+2\times 2\left(-1\right)}{29})
By definition, i^{2} is -1.
Re(\frac{15+6i+10i-4}{29})
Do the multiplications in 3\times 5+3\times \left(2i\right)+2i\times 5+2\times 2\left(-1\right).
Re(\frac{15-4+\left(6+10\right)i}{29})
Combine the real and imaginary parts in 15+6i+10i-4.
Re(\frac{11+16i}{29})
Do the additions in 15-4+\left(6+10\right)i.
Re(\frac{11}{29}+\frac{16}{29}i)
Divide 11+16i by 29 to get \frac{11}{29}+\frac{16}{29}i.
\frac{11}{29}
The real part of \frac{11}{29}+\frac{16}{29}i is \frac{11}{29}.