Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3+2i\right)\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 2-i.
\frac{\left(3+2i\right)\left(2-i\right)}{2^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+2i\right)\left(2-i\right)}{5}
By definition, i^{2} is -1. Calculate the denominator.
\frac{3\times 2+3\left(-i\right)+2i\times 2+2\left(-1\right)i^{2}}{5}
Multiply complex numbers 3+2i and 2-i like you multiply binomials.
\frac{3\times 2+3\left(-i\right)+2i\times 2+2\left(-1\right)\left(-1\right)}{5}
By definition, i^{2} is -1.
\frac{6-3i+4i+2}{5}
Do the multiplications in 3\times 2+3\left(-i\right)+2i\times 2+2\left(-1\right)\left(-1\right).
\frac{6+2+\left(-3+4\right)i}{5}
Combine the real and imaginary parts in 6-3i+4i+2.
\frac{8+i}{5}
Do the additions in 6+2+\left(-3+4\right)i.
\frac{8}{5}+\frac{1}{5}i
Divide 8+i by 5 to get \frac{8}{5}+\frac{1}{5}i.
Re(\frac{\left(3+2i\right)\left(2-i\right)}{\left(2+i\right)\left(2-i\right)})
Multiply both numerator and denominator of \frac{3+2i}{2+i} by the complex conjugate of the denominator, 2-i.
Re(\frac{\left(3+2i\right)\left(2-i\right)}{2^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(3+2i\right)\left(2-i\right)}{5})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{3\times 2+3\left(-i\right)+2i\times 2+2\left(-1\right)i^{2}}{5})
Multiply complex numbers 3+2i and 2-i like you multiply binomials.
Re(\frac{3\times 2+3\left(-i\right)+2i\times 2+2\left(-1\right)\left(-1\right)}{5})
By definition, i^{2} is -1.
Re(\frac{6-3i+4i+2}{5})
Do the multiplications in 3\times 2+3\left(-i\right)+2i\times 2+2\left(-1\right)\left(-1\right).
Re(\frac{6+2+\left(-3+4\right)i}{5})
Combine the real and imaginary parts in 6-3i+4i+2.
Re(\frac{8+i}{5})
Do the additions in 6+2+\left(-3+4\right)i.
Re(\frac{8}{5}+\frac{1}{5}i)
Divide 8+i by 5 to get \frac{8}{5}+\frac{1}{5}i.
\frac{8}{5}
The real part of \frac{8}{5}+\frac{1}{5}i is \frac{8}{5}.