Solve for P
P=-13\sqrt{3}-7\approx -29.516660498
Share
Copied to clipboard
\frac{\left(3+2\sqrt{3}\right)\left(3+2\sqrt{3}\right)}{\left(3-2\sqrt{3}\right)\left(3+2\sqrt{3}\right)}=P+9\sqrt{3}
Rationalize the denominator of \frac{3+2\sqrt{3}}{3-2\sqrt{3}} by multiplying numerator and denominator by 3+2\sqrt{3}.
\frac{\left(3+2\sqrt{3}\right)\left(3+2\sqrt{3}\right)}{3^{2}-\left(-2\sqrt{3}\right)^{2}}=P+9\sqrt{3}
Consider \left(3-2\sqrt{3}\right)\left(3+2\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+2\sqrt{3}\right)^{2}}{3^{2}-\left(-2\sqrt{3}\right)^{2}}=P+9\sqrt{3}
Multiply 3+2\sqrt{3} and 3+2\sqrt{3} to get \left(3+2\sqrt{3}\right)^{2}.
\frac{9+12\sqrt{3}+4\left(\sqrt{3}\right)^{2}}{3^{2}-\left(-2\sqrt{3}\right)^{2}}=P+9\sqrt{3}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+2\sqrt{3}\right)^{2}.
\frac{9+12\sqrt{3}+4\times 3}{3^{2}-\left(-2\sqrt{3}\right)^{2}}=P+9\sqrt{3}
The square of \sqrt{3} is 3.
\frac{9+12\sqrt{3}+12}{3^{2}-\left(-2\sqrt{3}\right)^{2}}=P+9\sqrt{3}
Multiply 4 and 3 to get 12.
\frac{21+12\sqrt{3}}{3^{2}-\left(-2\sqrt{3}\right)^{2}}=P+9\sqrt{3}
Add 9 and 12 to get 21.
\frac{21+12\sqrt{3}}{9-\left(-2\sqrt{3}\right)^{2}}=P+9\sqrt{3}
Calculate 3 to the power of 2 and get 9.
\frac{21+12\sqrt{3}}{9-\left(-2\right)^{2}\left(\sqrt{3}\right)^{2}}=P+9\sqrt{3}
Expand \left(-2\sqrt{3}\right)^{2}.
\frac{21+12\sqrt{3}}{9-4\left(\sqrt{3}\right)^{2}}=P+9\sqrt{3}
Calculate -2 to the power of 2 and get 4.
\frac{21+12\sqrt{3}}{9-4\times 3}=P+9\sqrt{3}
The square of \sqrt{3} is 3.
\frac{21+12\sqrt{3}}{9-12}=P+9\sqrt{3}
Multiply 4 and 3 to get 12.
\frac{21+12\sqrt{3}}{-3}=P+9\sqrt{3}
Subtract 12 from 9 to get -3.
-7-4\sqrt{3}=P+9\sqrt{3}
Divide each term of 21+12\sqrt{3} by -3 to get -7-4\sqrt{3}.
P+9\sqrt{3}=-7-4\sqrt{3}
Swap sides so that all variable terms are on the left hand side.
P=-7-4\sqrt{3}-9\sqrt{3}
Subtract 9\sqrt{3} from both sides.
P=-7-13\sqrt{3}
Combine -4\sqrt{3} and -9\sqrt{3} to get -13\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}