Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3+2\sqrt{3}\right)\left(2\sqrt{3}-4\right)}{\left(2\sqrt{3}+4\right)\left(2\sqrt{3}-4\right)}
Rationalize the denominator of \frac{3+2\sqrt{3}}{2\sqrt{3}+4} by multiplying numerator and denominator by 2\sqrt{3}-4.
\frac{\left(3+2\sqrt{3}\right)\left(2\sqrt{3}-4\right)}{\left(2\sqrt{3}\right)^{2}-4^{2}}
Consider \left(2\sqrt{3}+4\right)\left(2\sqrt{3}-4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+2\sqrt{3}\right)\left(2\sqrt{3}-4\right)}{2^{2}\left(\sqrt{3}\right)^{2}-4^{2}}
Expand \left(2\sqrt{3}\right)^{2}.
\frac{\left(3+2\sqrt{3}\right)\left(2\sqrt{3}-4\right)}{4\left(\sqrt{3}\right)^{2}-4^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(3+2\sqrt{3}\right)\left(2\sqrt{3}-4\right)}{4\times 3-4^{2}}
The square of \sqrt{3} is 3.
\frac{\left(3+2\sqrt{3}\right)\left(2\sqrt{3}-4\right)}{12-4^{2}}
Multiply 4 and 3 to get 12.
\frac{\left(3+2\sqrt{3}\right)\left(2\sqrt{3}-4\right)}{12-16}
Calculate 4 to the power of 2 and get 16.
\frac{\left(3+2\sqrt{3}\right)\left(2\sqrt{3}-4\right)}{-4}
Subtract 16 from 12 to get -4.
\frac{6\sqrt{3}-12+4\left(\sqrt{3}\right)^{2}-8\sqrt{3}}{-4}
Apply the distributive property by multiplying each term of 3+2\sqrt{3} by each term of 2\sqrt{3}-4.
\frac{6\sqrt{3}-12+4\times 3-8\sqrt{3}}{-4}
The square of \sqrt{3} is 3.
\frac{6\sqrt{3}-12+12-8\sqrt{3}}{-4}
Multiply 4 and 3 to get 12.
\frac{6\sqrt{3}-8\sqrt{3}}{-4}
Add -12 and 12 to get 0.
\frac{-2\sqrt{3}}{-4}
Combine 6\sqrt{3} and -8\sqrt{3} to get -2\sqrt{3}.
\frac{1}{2}\sqrt{3}
Divide -2\sqrt{3} by -4 to get \frac{1}{2}\sqrt{3}.