Evaluate
\frac{1}{2}=0.5
Factor
\frac{1}{2} = 0.5
Share
Copied to clipboard
\frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)}{\left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right)}\times \frac{\sqrt{2}-1}{\sqrt{2}}
Rationalize the denominator of \frac{3+2\sqrt{2}}{2+\sqrt{2}} by multiplying numerator and denominator by 2-\sqrt{2}.
\frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)}{2^{2}-\left(\sqrt{2}\right)^{2}}\times \frac{\sqrt{2}-1}{\sqrt{2}}
Consider \left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)}{4-2}\times \frac{\sqrt{2}-1}{\sqrt{2}}
Square 2. Square \sqrt{2}.
\frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)}{2}\times \frac{\sqrt{2}-1}{\sqrt{2}}
Subtract 2 from 4 to get 2.
\frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)}{2}\times \frac{\left(\sqrt{2}-1\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{2}-1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)}{2}\times \frac{\left(\sqrt{2}-1\right)\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)\left(\sqrt{2}-1\right)\sqrt{2}}{2\times 2}
Multiply \frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)}{2} times \frac{\left(\sqrt{2}-1\right)\sqrt{2}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(3+2\sqrt{2}\right)\left(2-\sqrt{2}\right)\left(\sqrt{2}-1\right)\sqrt{2}}{4}
Multiply 2 and 2 to get 4.
\frac{\left(6-3\sqrt{2}+4\sqrt{2}-2\left(\sqrt{2}\right)^{2}\right)\left(\sqrt{2}-1\right)\sqrt{2}}{4}
Apply the distributive property by multiplying each term of 3+2\sqrt{2} by each term of 2-\sqrt{2}.
\frac{\left(6+\sqrt{2}-2\left(\sqrt{2}\right)^{2}\right)\left(\sqrt{2}-1\right)\sqrt{2}}{4}
Combine -3\sqrt{2} and 4\sqrt{2} to get \sqrt{2}.
\frac{\left(6+\sqrt{2}-2\times 2\right)\left(\sqrt{2}-1\right)\sqrt{2}}{4}
The square of \sqrt{2} is 2.
\frac{\left(6+\sqrt{2}-4\right)\left(\sqrt{2}-1\right)\sqrt{2}}{4}
Multiply -2 and 2 to get -4.
\frac{\left(2+\sqrt{2}\right)\left(\sqrt{2}-1\right)\sqrt{2}}{4}
Subtract 4 from 6 to get 2.
\frac{\left(2\sqrt{2}-2+\left(\sqrt{2}\right)^{2}-\sqrt{2}\right)\sqrt{2}}{4}
Apply the distributive property by multiplying each term of 2+\sqrt{2} by each term of \sqrt{2}-1.
\frac{\left(2\sqrt{2}-2+2-\sqrt{2}\right)\sqrt{2}}{4}
The square of \sqrt{2} is 2.
\frac{\left(2\sqrt{2}-\sqrt{2}\right)\sqrt{2}}{4}
Add -2 and 2 to get 0.
\frac{\sqrt{2}\sqrt{2}}{4}
Combine 2\sqrt{2} and -\sqrt{2} to get \sqrt{2}.
\frac{2}{4}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{1}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}