Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3+\sqrt{6}\right)\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}
Rationalize the denominator of \frac{3+\sqrt{6}}{\sqrt{3}+\sqrt{2}} by multiplying numerator and denominator by \sqrt{3}-\sqrt{2}.
\frac{\left(3+\sqrt{6}\right)\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+\sqrt{6}\right)\left(\sqrt{3}-\sqrt{2}\right)}{3-2}
Square \sqrt{3}. Square \sqrt{2}.
\frac{\left(3+\sqrt{6}\right)\left(\sqrt{3}-\sqrt{2}\right)}{1}
Subtract 2 from 3 to get 1.
\left(3+\sqrt{6}\right)\left(\sqrt{3}-\sqrt{2}\right)
Anything divided by one gives itself.
3\sqrt{3}-3\sqrt{2}+\sqrt{6}\sqrt{3}-\sqrt{6}\sqrt{2}
Apply the distributive property by multiplying each term of 3+\sqrt{6} by each term of \sqrt{3}-\sqrt{2}.
3\sqrt{3}-3\sqrt{2}+\sqrt{3}\sqrt{2}\sqrt{3}-\sqrt{6}\sqrt{2}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
3\sqrt{3}-3\sqrt{2}+3\sqrt{2}-\sqrt{6}\sqrt{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
3\sqrt{3}-\sqrt{6}\sqrt{2}
Combine -3\sqrt{2} and 3\sqrt{2} to get 0.
3\sqrt{3}-\sqrt{2}\sqrt{3}\sqrt{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
3\sqrt{3}-2\sqrt{3}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\sqrt{3}
Combine 3\sqrt{3} and -2\sqrt{3} to get \sqrt{3}.