Evaluate
\frac{2\sqrt{30}+3\sqrt{10}}{5}\approx 4.088256826
Factor
\frac{2 \sqrt{30} + 3 \sqrt{10}}{5} = 4.088256826121691
Share
Copied to clipboard
\frac{\left(3+\sqrt{3}\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\times \frac{1+\sqrt{3}}{\sqrt{5}}
Rationalize the denominator of \frac{3+\sqrt{3}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\left(3+\sqrt{3}\right)\sqrt{2}}{2}\times \frac{1+\sqrt{3}}{\sqrt{5}}
The square of \sqrt{2} is 2.
\frac{\left(3+\sqrt{3}\right)\sqrt{2}}{2}\times \frac{\left(1+\sqrt{3}\right)\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{1+\sqrt{3}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\left(3+\sqrt{3}\right)\sqrt{2}}{2}\times \frac{\left(1+\sqrt{3}\right)\sqrt{5}}{5}
The square of \sqrt{5} is 5.
\frac{\left(3+\sqrt{3}\right)\sqrt{2}\left(1+\sqrt{3}\right)\sqrt{5}}{2\times 5}
Multiply \frac{\left(3+\sqrt{3}\right)\sqrt{2}}{2} times \frac{\left(1+\sqrt{3}\right)\sqrt{5}}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(3+\sqrt{3}\right)\sqrt{10}\left(1+\sqrt{3}\right)}{2\times 5}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
\frac{\left(3+\sqrt{3}\right)\sqrt{10}\left(1+\sqrt{3}\right)}{10}
Multiply 2 and 5 to get 10.
\frac{\left(3\sqrt{10}+\sqrt{3}\sqrt{10}\right)\left(1+\sqrt{3}\right)}{10}
Use the distributive property to multiply 3+\sqrt{3} by \sqrt{10}.
\frac{\left(3\sqrt{10}+\sqrt{30}\right)\left(1+\sqrt{3}\right)}{10}
To multiply \sqrt{3} and \sqrt{10}, multiply the numbers under the square root.
\frac{3\sqrt{10}+3\sqrt{10}\sqrt{3}+\sqrt{30}+\sqrt{30}\sqrt{3}}{10}
Apply the distributive property by multiplying each term of 3\sqrt{10}+\sqrt{30} by each term of 1+\sqrt{3}.
\frac{3\sqrt{10}+3\sqrt{30}+\sqrt{30}+\sqrt{30}\sqrt{3}}{10}
To multiply \sqrt{10} and \sqrt{3}, multiply the numbers under the square root.
\frac{3\sqrt{10}+4\sqrt{30}+\sqrt{30}\sqrt{3}}{10}
Combine 3\sqrt{30} and \sqrt{30} to get 4\sqrt{30}.
\frac{3\sqrt{10}+4\sqrt{30}+\sqrt{3}\sqrt{10}\sqrt{3}}{10}
Factor 30=3\times 10. Rewrite the square root of the product \sqrt{3\times 10} as the product of square roots \sqrt{3}\sqrt{10}.
\frac{3\sqrt{10}+4\sqrt{30}+3\sqrt{10}}{10}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{6\sqrt{10}+4\sqrt{30}}{10}
Combine 3\sqrt{10} and 3\sqrt{10} to get 6\sqrt{10}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}