Skip to main content
Solve for b
Tick mark Image
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3+\sqrt{2}\right)\left(3+\sqrt{2}\right)}{\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)}=a+b\sqrt{2}
Rationalize the denominator of \frac{3+\sqrt{2}}{3-\sqrt{2}} by multiplying numerator and denominator by 3+\sqrt{2}.
\frac{\left(3+\sqrt{2}\right)\left(3+\sqrt{2}\right)}{3^{2}-\left(\sqrt{2}\right)^{2}}=a+b\sqrt{2}
Consider \left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+\sqrt{2}\right)\left(3+\sqrt{2}\right)}{9-2}=a+b\sqrt{2}
Square 3. Square \sqrt{2}.
\frac{\left(3+\sqrt{2}\right)\left(3+\sqrt{2}\right)}{7}=a+b\sqrt{2}
Subtract 2 from 9 to get 7.
\frac{\left(3+\sqrt{2}\right)^{2}}{7}=a+b\sqrt{2}
Multiply 3+\sqrt{2} and 3+\sqrt{2} to get \left(3+\sqrt{2}\right)^{2}.
\frac{9+6\sqrt{2}+\left(\sqrt{2}\right)^{2}}{7}=a+b\sqrt{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+\sqrt{2}\right)^{2}.
\frac{9+6\sqrt{2}+2}{7}=a+b\sqrt{2}
The square of \sqrt{2} is 2.
\frac{11+6\sqrt{2}}{7}=a+b\sqrt{2}
Add 9 and 2 to get 11.
\frac{11}{7}+\frac{6}{7}\sqrt{2}=a+b\sqrt{2}
Divide each term of 11+6\sqrt{2} by 7 to get \frac{11}{7}+\frac{6}{7}\sqrt{2}.
a+b\sqrt{2}=\frac{11}{7}+\frac{6}{7}\sqrt{2}
Swap sides so that all variable terms are on the left hand side.
b\sqrt{2}=\frac{11}{7}+\frac{6}{7}\sqrt{2}-a
Subtract a from both sides.
\sqrt{2}b=-a+\frac{6\sqrt{2}}{7}+\frac{11}{7}
The equation is in standard form.
\frac{\sqrt{2}b}{\sqrt{2}}=\frac{-a+\frac{6\sqrt{2}}{7}+\frac{11}{7}}{\sqrt{2}}
Divide both sides by \sqrt{2}.
b=\frac{-a+\frac{6\sqrt{2}}{7}+\frac{11}{7}}{\sqrt{2}}
Dividing by \sqrt{2} undoes the multiplication by \sqrt{2}.
b=-\frac{\sqrt{2}a}{2}+\frac{11\sqrt{2}}{14}+\frac{6}{7}
Divide \frac{6\sqrt{2}}{7}-a+\frac{11}{7} by \sqrt{2}.