Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3+\sqrt{2}\right)\left(3+\sqrt{2}\right)}{\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)}
Rationalize the denominator of \frac{3+\sqrt{2}}{3-\sqrt{2}} by multiplying numerator and denominator by 3+\sqrt{2}.
\frac{\left(3+\sqrt{2}\right)\left(3+\sqrt{2}\right)}{3^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+\sqrt{2}\right)\left(3+\sqrt{2}\right)}{9-2}
Square 3. Square \sqrt{2}.
\frac{\left(3+\sqrt{2}\right)\left(3+\sqrt{2}\right)}{7}
Subtract 2 from 9 to get 7.
\frac{\left(3+\sqrt{2}\right)^{2}}{7}
Multiply 3+\sqrt{2} and 3+\sqrt{2} to get \left(3+\sqrt{2}\right)^{2}.
\frac{9+6\sqrt{2}+\left(\sqrt{2}\right)^{2}}{7}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+\sqrt{2}\right)^{2}.
\frac{9+6\sqrt{2}+2}{7}
The square of \sqrt{2} is 2.
\frac{11+6\sqrt{2}}{7}
Add 9 and 2 to get 11.