Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}
Rationalize the denominator of \frac{3+\sqrt{2}}{\sqrt{5}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{5}-\sqrt{3}.
\frac{\left(3+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}\right)}{5-3}
Square \sqrt{5}. Square \sqrt{3}.
\frac{\left(3+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}\right)}{2}
Subtract 3 from 5 to get 2.
\frac{3\sqrt{5}-3\sqrt{3}+\sqrt{2}\sqrt{5}-\sqrt{2}\sqrt{3}}{2}
Apply the distributive property by multiplying each term of 3+\sqrt{2} by each term of \sqrt{5}-\sqrt{3}.
\frac{3\sqrt{5}-3\sqrt{3}+\sqrt{10}-\sqrt{2}\sqrt{3}}{2}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
\frac{3\sqrt{5}-3\sqrt{3}+\sqrt{10}-\sqrt{6}}{2}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.