Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3+\sqrt{15}\right)\left(3+\sqrt{15}\right)}{\left(3-\sqrt{15}\right)\left(3+\sqrt{15}\right)}
Rationalize the denominator of \frac{3+\sqrt{15}}{3-\sqrt{15}} by multiplying numerator and denominator by 3+\sqrt{15}.
\frac{\left(3+\sqrt{15}\right)\left(3+\sqrt{15}\right)}{3^{2}-\left(\sqrt{15}\right)^{2}}
Consider \left(3-\sqrt{15}\right)\left(3+\sqrt{15}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+\sqrt{15}\right)\left(3+\sqrt{15}\right)}{9-15}
Square 3. Square \sqrt{15}.
\frac{\left(3+\sqrt{15}\right)\left(3+\sqrt{15}\right)}{-6}
Subtract 15 from 9 to get -6.
\frac{\left(3+\sqrt{15}\right)^{2}}{-6}
Multiply 3+\sqrt{15} and 3+\sqrt{15} to get \left(3+\sqrt{15}\right)^{2}.
\frac{9+6\sqrt{15}+\left(\sqrt{15}\right)^{2}}{-6}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+\sqrt{15}\right)^{2}.
\frac{9+6\sqrt{15}+15}{-6}
The square of \sqrt{15} is 15.
\frac{24+6\sqrt{15}}{-6}
Add 9 and 15 to get 24.
-4-\sqrt{15}
Divide each term of 24+6\sqrt{15} by -6 to get -4-\sqrt{15}.