Evaluate
\frac{731}{242}\approx 3.020661157
Factor
\frac{17 \cdot 43}{2 \cdot 11 ^ {2}} = 3\frac{5}{242} = 3.020661157024793
Share
Copied to clipboard
\frac{\frac{33}{11}+\frac{10}{11}}{1+\frac{5}{17}}
Convert 3 to fraction \frac{33}{11}.
\frac{\frac{33+10}{11}}{1+\frac{5}{17}}
Since \frac{33}{11} and \frac{10}{11} have the same denominator, add them by adding their numerators.
\frac{\frac{43}{11}}{1+\frac{5}{17}}
Add 33 and 10 to get 43.
\frac{\frac{43}{11}}{\frac{17}{17}+\frac{5}{17}}
Convert 1 to fraction \frac{17}{17}.
\frac{\frac{43}{11}}{\frac{17+5}{17}}
Since \frac{17}{17} and \frac{5}{17} have the same denominator, add them by adding their numerators.
\frac{\frac{43}{11}}{\frac{22}{17}}
Add 17 and 5 to get 22.
\frac{43}{11}\times \frac{17}{22}
Divide \frac{43}{11} by \frac{22}{17} by multiplying \frac{43}{11} by the reciprocal of \frac{22}{17}.
\frac{43\times 17}{11\times 22}
Multiply \frac{43}{11} times \frac{17}{22} by multiplying numerator times numerator and denominator times denominator.
\frac{731}{242}
Do the multiplications in the fraction \frac{43\times 17}{11\times 22}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}