Evaluate
\frac{29165956}{5}=5833191.2
Factor
\frac{2 ^ {2} \cdot 7291489}{5} = 5833191\frac{1}{5} = 5833191.2
Share
Copied to clipboard
\begin{array}{l}\phantom{50)}\phantom{1}\\50\overline{)291659560}\\\end{array}
Use the 1^{st} digit 2 from dividend 291659560
\begin{array}{l}\phantom{50)}0\phantom{2}\\50\overline{)291659560}\\\end{array}
Since 2 is less than 50, use the next digit 9 from dividend 291659560 and add 0 to the quotient
\begin{array}{l}\phantom{50)}0\phantom{3}\\50\overline{)291659560}\\\end{array}
Use the 2^{nd} digit 9 from dividend 291659560
\begin{array}{l}\phantom{50)}00\phantom{4}\\50\overline{)291659560}\\\end{array}
Since 29 is less than 50, use the next digit 1 from dividend 291659560 and add 0 to the quotient
\begin{array}{l}\phantom{50)}00\phantom{5}\\50\overline{)291659560}\\\end{array}
Use the 3^{rd} digit 1 from dividend 291659560
\begin{array}{l}\phantom{50)}005\phantom{6}\\50\overline{)291659560}\\\phantom{50)}\underline{\phantom{}250\phantom{999999}}\\\phantom{50)9}41\\\end{array}
Find closest multiple of 50 to 291. We see that 5 \times 50 = 250 is the nearest. Now subtract 250 from 291 to get reminder 41. Add 5 to quotient.
\begin{array}{l}\phantom{50)}005\phantom{7}\\50\overline{)291659560}\\\phantom{50)}\underline{\phantom{}250\phantom{999999}}\\\phantom{50)9}416\\\end{array}
Use the 4^{th} digit 6 from dividend 291659560
\begin{array}{l}\phantom{50)}0058\phantom{8}\\50\overline{)291659560}\\\phantom{50)}\underline{\phantom{}250\phantom{999999}}\\\phantom{50)9}416\\\phantom{50)}\underline{\phantom{9}400\phantom{99999}}\\\phantom{50)99}16\\\end{array}
Find closest multiple of 50 to 416. We see that 8 \times 50 = 400 is the nearest. Now subtract 400 from 416 to get reminder 16. Add 8 to quotient.
\begin{array}{l}\phantom{50)}0058\phantom{9}\\50\overline{)291659560}\\\phantom{50)}\underline{\phantom{}250\phantom{999999}}\\\phantom{50)9}416\\\phantom{50)}\underline{\phantom{9}400\phantom{99999}}\\\phantom{50)99}165\\\end{array}
Use the 5^{th} digit 5 from dividend 291659560
\begin{array}{l}\phantom{50)}00583\phantom{10}\\50\overline{)291659560}\\\phantom{50)}\underline{\phantom{}250\phantom{999999}}\\\phantom{50)9}416\\\phantom{50)}\underline{\phantom{9}400\phantom{99999}}\\\phantom{50)99}165\\\phantom{50)}\underline{\phantom{99}150\phantom{9999}}\\\phantom{50)999}15\\\end{array}
Find closest multiple of 50 to 165. We see that 3 \times 50 = 150 is the nearest. Now subtract 150 from 165 to get reminder 15. Add 3 to quotient.
\begin{array}{l}\phantom{50)}00583\phantom{11}\\50\overline{)291659560}\\\phantom{50)}\underline{\phantom{}250\phantom{999999}}\\\phantom{50)9}416\\\phantom{50)}\underline{\phantom{9}400\phantom{99999}}\\\phantom{50)99}165\\\phantom{50)}\underline{\phantom{99}150\phantom{9999}}\\\phantom{50)999}159\\\end{array}
Use the 6^{th} digit 9 from dividend 291659560
\begin{array}{l}\phantom{50)}005833\phantom{12}\\50\overline{)291659560}\\\phantom{50)}\underline{\phantom{}250\phantom{999999}}\\\phantom{50)9}416\\\phantom{50)}\underline{\phantom{9}400\phantom{99999}}\\\phantom{50)99}165\\\phantom{50)}\underline{\phantom{99}150\phantom{9999}}\\\phantom{50)999}159\\\phantom{50)}\underline{\phantom{999}150\phantom{999}}\\\phantom{50)99999}9\\\end{array}
Find closest multiple of 50 to 159. We see that 3 \times 50 = 150 is the nearest. Now subtract 150 from 159 to get reminder 9. Add 3 to quotient.
\begin{array}{l}\phantom{50)}005833\phantom{13}\\50\overline{)291659560}\\\phantom{50)}\underline{\phantom{}250\phantom{999999}}\\\phantom{50)9}416\\\phantom{50)}\underline{\phantom{9}400\phantom{99999}}\\\phantom{50)99}165\\\phantom{50)}\underline{\phantom{99}150\phantom{9999}}\\\phantom{50)999}159\\\phantom{50)}\underline{\phantom{999}150\phantom{999}}\\\phantom{50)99999}95\\\end{array}
Use the 7^{th} digit 5 from dividend 291659560
\begin{array}{l}\phantom{50)}0058331\phantom{14}\\50\overline{)291659560}\\\phantom{50)}\underline{\phantom{}250\phantom{999999}}\\\phantom{50)9}416\\\phantom{50)}\underline{\phantom{9}400\phantom{99999}}\\\phantom{50)99}165\\\phantom{50)}\underline{\phantom{99}150\phantom{9999}}\\\phantom{50)999}159\\\phantom{50)}\underline{\phantom{999}150\phantom{999}}\\\phantom{50)99999}95\\\phantom{50)}\underline{\phantom{99999}50\phantom{99}}\\\phantom{50)99999}45\\\end{array}
Find closest multiple of 50 to 95. We see that 1 \times 50 = 50 is the nearest. Now subtract 50 from 95 to get reminder 45. Add 1 to quotient.
\begin{array}{l}\phantom{50)}0058331\phantom{15}\\50\overline{)291659560}\\\phantom{50)}\underline{\phantom{}250\phantom{999999}}\\\phantom{50)9}416\\\phantom{50)}\underline{\phantom{9}400\phantom{99999}}\\\phantom{50)99}165\\\phantom{50)}\underline{\phantom{99}150\phantom{9999}}\\\phantom{50)999}159\\\phantom{50)}\underline{\phantom{999}150\phantom{999}}\\\phantom{50)99999}95\\\phantom{50)}\underline{\phantom{99999}50\phantom{99}}\\\phantom{50)99999}456\\\end{array}
Use the 8^{th} digit 6 from dividend 291659560
\begin{array}{l}\phantom{50)}00583319\phantom{16}\\50\overline{)291659560}\\\phantom{50)}\underline{\phantom{}250\phantom{999999}}\\\phantom{50)9}416\\\phantom{50)}\underline{\phantom{9}400\phantom{99999}}\\\phantom{50)99}165\\\phantom{50)}\underline{\phantom{99}150\phantom{9999}}\\\phantom{50)999}159\\\phantom{50)}\underline{\phantom{999}150\phantom{999}}\\\phantom{50)99999}95\\\phantom{50)}\underline{\phantom{99999}50\phantom{99}}\\\phantom{50)99999}456\\\phantom{50)}\underline{\phantom{99999}450\phantom{9}}\\\phantom{50)9999999}6\\\end{array}
Find closest multiple of 50 to 456. We see that 9 \times 50 = 450 is the nearest. Now subtract 450 from 456 to get reminder 6. Add 9 to quotient.
\begin{array}{l}\phantom{50)}00583319\phantom{17}\\50\overline{)291659560}\\\phantom{50)}\underline{\phantom{}250\phantom{999999}}\\\phantom{50)9}416\\\phantom{50)}\underline{\phantom{9}400\phantom{99999}}\\\phantom{50)99}165\\\phantom{50)}\underline{\phantom{99}150\phantom{9999}}\\\phantom{50)999}159\\\phantom{50)}\underline{\phantom{999}150\phantom{999}}\\\phantom{50)99999}95\\\phantom{50)}\underline{\phantom{99999}50\phantom{99}}\\\phantom{50)99999}456\\\phantom{50)}\underline{\phantom{99999}450\phantom{9}}\\\phantom{50)9999999}60\\\end{array}
Use the 9^{th} digit 0 from dividend 291659560
\begin{array}{l}\phantom{50)}005833191\phantom{18}\\50\overline{)291659560}\\\phantom{50)}\underline{\phantom{}250\phantom{999999}}\\\phantom{50)9}416\\\phantom{50)}\underline{\phantom{9}400\phantom{99999}}\\\phantom{50)99}165\\\phantom{50)}\underline{\phantom{99}150\phantom{9999}}\\\phantom{50)999}159\\\phantom{50)}\underline{\phantom{999}150\phantom{999}}\\\phantom{50)99999}95\\\phantom{50)}\underline{\phantom{99999}50\phantom{99}}\\\phantom{50)99999}456\\\phantom{50)}\underline{\phantom{99999}450\phantom{9}}\\\phantom{50)9999999}60\\\phantom{50)}\underline{\phantom{9999999}50\phantom{}}\\\phantom{50)9999999}10\\\end{array}
Find closest multiple of 50 to 60. We see that 1 \times 50 = 50 is the nearest. Now subtract 50 from 60 to get reminder 10. Add 1 to quotient.
\text{Quotient: }5833191 \text{Reminder: }10
Since 10 is less than 50, stop the division. The reminder is 10. The topmost line 005833191 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5833191.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}