Evaluate
\frac{7250}{3}\approx 2416.666666667
Factor
\frac{2 \cdot 5 ^ {3} \cdot 29}{3} = 2416\frac{2}{3} = 2416.6666666666665
Share
Copied to clipboard
\begin{array}{l}\phantom{120000)}\phantom{1}\\120000\overline{)290000000}\\\end{array}
Use the 1^{st} digit 2 from dividend 290000000
\begin{array}{l}\phantom{120000)}0\phantom{2}\\120000\overline{)290000000}\\\end{array}
Since 2 is less than 120000, use the next digit 9 from dividend 290000000 and add 0 to the quotient
\begin{array}{l}\phantom{120000)}0\phantom{3}\\120000\overline{)290000000}\\\end{array}
Use the 2^{nd} digit 9 from dividend 290000000
\begin{array}{l}\phantom{120000)}00\phantom{4}\\120000\overline{)290000000}\\\end{array}
Since 29 is less than 120000, use the next digit 0 from dividend 290000000 and add 0 to the quotient
\begin{array}{l}\phantom{120000)}00\phantom{5}\\120000\overline{)290000000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 290000000
\begin{array}{l}\phantom{120000)}000\phantom{6}\\120000\overline{)290000000}\\\end{array}
Since 290 is less than 120000, use the next digit 0 from dividend 290000000 and add 0 to the quotient
\begin{array}{l}\phantom{120000)}000\phantom{7}\\120000\overline{)290000000}\\\end{array}
Use the 4^{th} digit 0 from dividend 290000000
\begin{array}{l}\phantom{120000)}0000\phantom{8}\\120000\overline{)290000000}\\\end{array}
Since 2900 is less than 120000, use the next digit 0 from dividend 290000000 and add 0 to the quotient
\begin{array}{l}\phantom{120000)}0000\phantom{9}\\120000\overline{)290000000}\\\end{array}
Use the 5^{th} digit 0 from dividend 290000000
\begin{array}{l}\phantom{120000)}00000\phantom{10}\\120000\overline{)290000000}\\\end{array}
Since 29000 is less than 120000, use the next digit 0 from dividend 290000000 and add 0 to the quotient
\begin{array}{l}\phantom{120000)}00000\phantom{11}\\120000\overline{)290000000}\\\end{array}
Use the 6^{th} digit 0 from dividend 290000000
\begin{array}{l}\phantom{120000)}000002\phantom{12}\\120000\overline{)290000000}\\\phantom{120000)}\underline{\phantom{}240000\phantom{999}}\\\phantom{120000)9}50000\\\end{array}
Find closest multiple of 120000 to 290000. We see that 2 \times 120000 = 240000 is the nearest. Now subtract 240000 from 290000 to get reminder 50000. Add 2 to quotient.
\begin{array}{l}\phantom{120000)}000002\phantom{13}\\120000\overline{)290000000}\\\phantom{120000)}\underline{\phantom{}240000\phantom{999}}\\\phantom{120000)9}500000\\\end{array}
Use the 7^{th} digit 0 from dividend 290000000
\begin{array}{l}\phantom{120000)}0000024\phantom{14}\\120000\overline{)290000000}\\\phantom{120000)}\underline{\phantom{}240000\phantom{999}}\\\phantom{120000)9}500000\\\phantom{120000)}\underline{\phantom{9}480000\phantom{99}}\\\phantom{120000)99}20000\\\end{array}
Find closest multiple of 120000 to 500000. We see that 4 \times 120000 = 480000 is the nearest. Now subtract 480000 from 500000 to get reminder 20000. Add 4 to quotient.
\begin{array}{l}\phantom{120000)}0000024\phantom{15}\\120000\overline{)290000000}\\\phantom{120000)}\underline{\phantom{}240000\phantom{999}}\\\phantom{120000)9}500000\\\phantom{120000)}\underline{\phantom{9}480000\phantom{99}}\\\phantom{120000)99}200000\\\end{array}
Use the 8^{th} digit 0 from dividend 290000000
\begin{array}{l}\phantom{120000)}00000241\phantom{16}\\120000\overline{)290000000}\\\phantom{120000)}\underline{\phantom{}240000\phantom{999}}\\\phantom{120000)9}500000\\\phantom{120000)}\underline{\phantom{9}480000\phantom{99}}\\\phantom{120000)99}200000\\\phantom{120000)}\underline{\phantom{99}120000\phantom{9}}\\\phantom{120000)999}80000\\\end{array}
Find closest multiple of 120000 to 200000. We see that 1 \times 120000 = 120000 is the nearest. Now subtract 120000 from 200000 to get reminder 80000. Add 1 to quotient.
\begin{array}{l}\phantom{120000)}00000241\phantom{17}\\120000\overline{)290000000}\\\phantom{120000)}\underline{\phantom{}240000\phantom{999}}\\\phantom{120000)9}500000\\\phantom{120000)}\underline{\phantom{9}480000\phantom{99}}\\\phantom{120000)99}200000\\\phantom{120000)}\underline{\phantom{99}120000\phantom{9}}\\\phantom{120000)999}800000\\\end{array}
Use the 9^{th} digit 0 from dividend 290000000
\begin{array}{l}\phantom{120000)}000002416\phantom{18}\\120000\overline{)290000000}\\\phantom{120000)}\underline{\phantom{}240000\phantom{999}}\\\phantom{120000)9}500000\\\phantom{120000)}\underline{\phantom{9}480000\phantom{99}}\\\phantom{120000)99}200000\\\phantom{120000)}\underline{\phantom{99}120000\phantom{9}}\\\phantom{120000)999}800000\\\phantom{120000)}\underline{\phantom{999}720000\phantom{}}\\\phantom{120000)9999}80000\\\end{array}
Find closest multiple of 120000 to 800000. We see that 6 \times 120000 = 720000 is the nearest. Now subtract 720000 from 800000 to get reminder 80000. Add 6 to quotient.
\text{Quotient: }2416 \text{Reminder: }80000
Since 80000 is less than 120000, stop the division. The reminder is 80000. The topmost line 000002416 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2416.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}