Verify
false
Share
Copied to clipboard
\frac{29}{9}-\frac{2}{10}=1-\frac{1}{3}-\left(-\frac{1}{10}\right)
Divide 1 by 1 to get 1.
\frac{29}{9}-\frac{1}{5}=1-\frac{1}{3}-\left(-\frac{1}{10}\right)
Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
\frac{145}{45}-\frac{9}{45}=1-\frac{1}{3}-\left(-\frac{1}{10}\right)
Least common multiple of 9 and 5 is 45. Convert \frac{29}{9} and \frac{1}{5} to fractions with denominator 45.
\frac{145-9}{45}=1-\frac{1}{3}-\left(-\frac{1}{10}\right)
Since \frac{145}{45} and \frac{9}{45} have the same denominator, subtract them by subtracting their numerators.
\frac{136}{45}=1-\frac{1}{3}-\left(-\frac{1}{10}\right)
Subtract 9 from 145 to get 136.
\frac{136}{45}=\frac{3}{3}-\frac{1}{3}-\left(-\frac{1}{10}\right)
Convert 1 to fraction \frac{3}{3}.
\frac{136}{45}=\frac{3-1}{3}-\left(-\frac{1}{10}\right)
Since \frac{3}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{136}{45}=\frac{2}{3}-\left(-\frac{1}{10}\right)
Subtract 1 from 3 to get 2.
\frac{136}{45}=\frac{2}{3}+\frac{1}{10}
The opposite of -\frac{1}{10} is \frac{1}{10}.
\frac{136}{45}=\frac{20}{30}+\frac{3}{30}
Least common multiple of 3 and 10 is 30. Convert \frac{2}{3} and \frac{1}{10} to fractions with denominator 30.
\frac{136}{45}=\frac{20+3}{30}
Since \frac{20}{30} and \frac{3}{30} have the same denominator, add them by adding their numerators.
\frac{136}{45}=\frac{23}{30}
Add 20 and 3 to get 23.
\frac{272}{90}=\frac{69}{90}
Least common multiple of 45 and 30 is 90. Convert \frac{136}{45} and \frac{23}{30} to fractions with denominator 90.
\text{false}
Compare \frac{272}{90} and \frac{69}{90}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}