Solve for x
x=\frac{\sqrt{345}}{15}+\frac{6}{5}\approx 2.438278375
x=-\frac{\sqrt{345}}{15}+\frac{6}{5}\approx -0.038278375
Graph
Share
Copied to clipboard
\frac{29}{10}=\frac{1}{2}\left(x^{2}-\frac{12}{5}x+\frac{36}{25}\right)+\frac{32}{15}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\frac{6}{5}\right)^{2}.
\frac{29}{10}=\frac{1}{2}x^{2}-\frac{6}{5}x+\frac{18}{25}+\frac{32}{15}
Use the distributive property to multiply \frac{1}{2} by x^{2}-\frac{12}{5}x+\frac{36}{25}.
\frac{29}{10}=\frac{1}{2}x^{2}-\frac{6}{5}x+\frac{214}{75}
Add \frac{18}{25} and \frac{32}{15} to get \frac{214}{75}.
\frac{1}{2}x^{2}-\frac{6}{5}x+\frac{214}{75}=\frac{29}{10}
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}x^{2}-\frac{6}{5}x+\frac{214}{75}-\frac{29}{10}=0
Subtract \frac{29}{10} from both sides.
\frac{1}{2}x^{2}-\frac{6}{5}x-\frac{7}{150}=0
Subtract \frac{29}{10} from \frac{214}{75} to get -\frac{7}{150}.
x=\frac{-\left(-\frac{6}{5}\right)±\sqrt{\left(-\frac{6}{5}\right)^{2}-4\times \frac{1}{2}\left(-\frac{7}{150}\right)}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, -\frac{6}{5} for b, and -\frac{7}{150} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{6}{5}\right)±\sqrt{\frac{36}{25}-4\times \frac{1}{2}\left(-\frac{7}{150}\right)}}{2\times \frac{1}{2}}
Square -\frac{6}{5} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{6}{5}\right)±\sqrt{\frac{36}{25}-2\left(-\frac{7}{150}\right)}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-\left(-\frac{6}{5}\right)±\sqrt{\frac{36}{25}+\frac{7}{75}}}{2\times \frac{1}{2}}
Multiply -2 times -\frac{7}{150}.
x=\frac{-\left(-\frac{6}{5}\right)±\sqrt{\frac{23}{15}}}{2\times \frac{1}{2}}
Add \frac{36}{25} to \frac{7}{75} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{6}{5}\right)±\frac{\sqrt{345}}{15}}{2\times \frac{1}{2}}
Take the square root of \frac{23}{15}.
x=\frac{\frac{6}{5}±\frac{\sqrt{345}}{15}}{2\times \frac{1}{2}}
The opposite of -\frac{6}{5} is \frac{6}{5}.
x=\frac{\frac{6}{5}±\frac{\sqrt{345}}{15}}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{\frac{\sqrt{345}}{15}+\frac{6}{5}}{1}
Now solve the equation x=\frac{\frac{6}{5}±\frac{\sqrt{345}}{15}}{1} when ± is plus. Add \frac{6}{5} to \frac{\sqrt{345}}{15}.
x=\frac{\sqrt{345}}{15}+\frac{6}{5}
Divide \frac{6}{5}+\frac{\sqrt{345}}{15} by 1.
x=\frac{-\frac{\sqrt{345}}{15}+\frac{6}{5}}{1}
Now solve the equation x=\frac{\frac{6}{5}±\frac{\sqrt{345}}{15}}{1} when ± is minus. Subtract \frac{\sqrt{345}}{15} from \frac{6}{5}.
x=-\frac{\sqrt{345}}{15}+\frac{6}{5}
Divide \frac{6}{5}-\frac{\sqrt{345}}{15} by 1.
x=\frac{\sqrt{345}}{15}+\frac{6}{5} x=-\frac{\sqrt{345}}{15}+\frac{6}{5}
The equation is now solved.
\frac{29}{10}=\frac{1}{2}\left(x^{2}-\frac{12}{5}x+\frac{36}{25}\right)+\frac{32}{15}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\frac{6}{5}\right)^{2}.
\frac{29}{10}=\frac{1}{2}x^{2}-\frac{6}{5}x+\frac{18}{25}+\frac{32}{15}
Use the distributive property to multiply \frac{1}{2} by x^{2}-\frac{12}{5}x+\frac{36}{25}.
\frac{29}{10}=\frac{1}{2}x^{2}-\frac{6}{5}x+\frac{214}{75}
Add \frac{18}{25} and \frac{32}{15} to get \frac{214}{75}.
\frac{1}{2}x^{2}-\frac{6}{5}x+\frac{214}{75}=\frac{29}{10}
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}x^{2}-\frac{6}{5}x=\frac{29}{10}-\frac{214}{75}
Subtract \frac{214}{75} from both sides.
\frac{1}{2}x^{2}-\frac{6}{5}x=\frac{7}{150}
Subtract \frac{214}{75} from \frac{29}{10} to get \frac{7}{150}.
\frac{\frac{1}{2}x^{2}-\frac{6}{5}x}{\frac{1}{2}}=\frac{\frac{7}{150}}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\left(-\frac{\frac{6}{5}}{\frac{1}{2}}\right)x=\frac{\frac{7}{150}}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}-\frac{12}{5}x=\frac{\frac{7}{150}}{\frac{1}{2}}
Divide -\frac{6}{5} by \frac{1}{2} by multiplying -\frac{6}{5} by the reciprocal of \frac{1}{2}.
x^{2}-\frac{12}{5}x=\frac{7}{75}
Divide \frac{7}{150} by \frac{1}{2} by multiplying \frac{7}{150} by the reciprocal of \frac{1}{2}.
x^{2}-\frac{12}{5}x+\left(-\frac{6}{5}\right)^{2}=\frac{7}{75}+\left(-\frac{6}{5}\right)^{2}
Divide -\frac{12}{5}, the coefficient of the x term, by 2 to get -\frac{6}{5}. Then add the square of -\frac{6}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{12}{5}x+\frac{36}{25}=\frac{7}{75}+\frac{36}{25}
Square -\frac{6}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{12}{5}x+\frac{36}{25}=\frac{23}{15}
Add \frac{7}{75} to \frac{36}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{6}{5}\right)^{2}=\frac{23}{15}
Factor x^{2}-\frac{12}{5}x+\frac{36}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{6}{5}\right)^{2}}=\sqrt{\frac{23}{15}}
Take the square root of both sides of the equation.
x-\frac{6}{5}=\frac{\sqrt{345}}{15} x-\frac{6}{5}=-\frac{\sqrt{345}}{15}
Simplify.
x=\frac{\sqrt{345}}{15}+\frac{6}{5} x=-\frac{\sqrt{345}}{15}+\frac{6}{5}
Add \frac{6}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}