Evaluate
\frac{143}{8}=17.875
Factor
\frac{11 \cdot 13}{2 ^ {3}} = 17\frac{7}{8} = 17.875
Share
Copied to clipboard
\begin{array}{l}\phantom{16)}\phantom{1}\\16\overline{)286}\\\end{array}
Use the 1^{st} digit 2 from dividend 286
\begin{array}{l}\phantom{16)}0\phantom{2}\\16\overline{)286}\\\end{array}
Since 2 is less than 16, use the next digit 8 from dividend 286 and add 0 to the quotient
\begin{array}{l}\phantom{16)}0\phantom{3}\\16\overline{)286}\\\end{array}
Use the 2^{nd} digit 8 from dividend 286
\begin{array}{l}\phantom{16)}01\phantom{4}\\16\overline{)286}\\\phantom{16)}\underline{\phantom{}16\phantom{9}}\\\phantom{16)}12\\\end{array}
Find closest multiple of 16 to 28. We see that 1 \times 16 = 16 is the nearest. Now subtract 16 from 28 to get reminder 12. Add 1 to quotient.
\begin{array}{l}\phantom{16)}01\phantom{5}\\16\overline{)286}\\\phantom{16)}\underline{\phantom{}16\phantom{9}}\\\phantom{16)}126\\\end{array}
Use the 3^{rd} digit 6 from dividend 286
\begin{array}{l}\phantom{16)}017\phantom{6}\\16\overline{)286}\\\phantom{16)}\underline{\phantom{}16\phantom{9}}\\\phantom{16)}126\\\phantom{16)}\underline{\phantom{}112\phantom{}}\\\phantom{16)9}14\\\end{array}
Find closest multiple of 16 to 126. We see that 7 \times 16 = 112 is the nearest. Now subtract 112 from 126 to get reminder 14. Add 7 to quotient.
\text{Quotient: }17 \text{Reminder: }14
Since 14 is less than 16, stop the division. The reminder is 14. The topmost line 017 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}