Evaluate
18935
Factor
5\times 7\times 541
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)284025}\\\end{array}
Use the 1^{st} digit 2 from dividend 284025
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)284025}\\\end{array}
Since 2 is less than 15, use the next digit 8 from dividend 284025 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)284025}\\\end{array}
Use the 2^{nd} digit 8 from dividend 284025
\begin{array}{l}\phantom{15)}01\phantom{4}\\15\overline{)284025}\\\phantom{15)}\underline{\phantom{}15\phantom{9999}}\\\phantom{15)}13\\\end{array}
Find closest multiple of 15 to 28. We see that 1 \times 15 = 15 is the nearest. Now subtract 15 from 28 to get reminder 13. Add 1 to quotient.
\begin{array}{l}\phantom{15)}01\phantom{5}\\15\overline{)284025}\\\phantom{15)}\underline{\phantom{}15\phantom{9999}}\\\phantom{15)}134\\\end{array}
Use the 3^{rd} digit 4 from dividend 284025
\begin{array}{l}\phantom{15)}018\phantom{6}\\15\overline{)284025}\\\phantom{15)}\underline{\phantom{}15\phantom{9999}}\\\phantom{15)}134\\\phantom{15)}\underline{\phantom{}120\phantom{999}}\\\phantom{15)9}14\\\end{array}
Find closest multiple of 15 to 134. We see that 8 \times 15 = 120 is the nearest. Now subtract 120 from 134 to get reminder 14. Add 8 to quotient.
\begin{array}{l}\phantom{15)}018\phantom{7}\\15\overline{)284025}\\\phantom{15)}\underline{\phantom{}15\phantom{9999}}\\\phantom{15)}134\\\phantom{15)}\underline{\phantom{}120\phantom{999}}\\\phantom{15)9}140\\\end{array}
Use the 4^{th} digit 0 from dividend 284025
\begin{array}{l}\phantom{15)}0189\phantom{8}\\15\overline{)284025}\\\phantom{15)}\underline{\phantom{}15\phantom{9999}}\\\phantom{15)}134\\\phantom{15)}\underline{\phantom{}120\phantom{999}}\\\phantom{15)9}140\\\phantom{15)}\underline{\phantom{9}135\phantom{99}}\\\phantom{15)999}5\\\end{array}
Find closest multiple of 15 to 140. We see that 9 \times 15 = 135 is the nearest. Now subtract 135 from 140 to get reminder 5. Add 9 to quotient.
\begin{array}{l}\phantom{15)}0189\phantom{9}\\15\overline{)284025}\\\phantom{15)}\underline{\phantom{}15\phantom{9999}}\\\phantom{15)}134\\\phantom{15)}\underline{\phantom{}120\phantom{999}}\\\phantom{15)9}140\\\phantom{15)}\underline{\phantom{9}135\phantom{99}}\\\phantom{15)999}52\\\end{array}
Use the 5^{th} digit 2 from dividend 284025
\begin{array}{l}\phantom{15)}01893\phantom{10}\\15\overline{)284025}\\\phantom{15)}\underline{\phantom{}15\phantom{9999}}\\\phantom{15)}134\\\phantom{15)}\underline{\phantom{}120\phantom{999}}\\\phantom{15)9}140\\\phantom{15)}\underline{\phantom{9}135\phantom{99}}\\\phantom{15)999}52\\\phantom{15)}\underline{\phantom{999}45\phantom{9}}\\\phantom{15)9999}7\\\end{array}
Find closest multiple of 15 to 52. We see that 3 \times 15 = 45 is the nearest. Now subtract 45 from 52 to get reminder 7. Add 3 to quotient.
\begin{array}{l}\phantom{15)}01893\phantom{11}\\15\overline{)284025}\\\phantom{15)}\underline{\phantom{}15\phantom{9999}}\\\phantom{15)}134\\\phantom{15)}\underline{\phantom{}120\phantom{999}}\\\phantom{15)9}140\\\phantom{15)}\underline{\phantom{9}135\phantom{99}}\\\phantom{15)999}52\\\phantom{15)}\underline{\phantom{999}45\phantom{9}}\\\phantom{15)9999}75\\\end{array}
Use the 6^{th} digit 5 from dividend 284025
\begin{array}{l}\phantom{15)}018935\phantom{12}\\15\overline{)284025}\\\phantom{15)}\underline{\phantom{}15\phantom{9999}}\\\phantom{15)}134\\\phantom{15)}\underline{\phantom{}120\phantom{999}}\\\phantom{15)9}140\\\phantom{15)}\underline{\phantom{9}135\phantom{99}}\\\phantom{15)999}52\\\phantom{15)}\underline{\phantom{999}45\phantom{9}}\\\phantom{15)9999}75\\\phantom{15)}\underline{\phantom{9999}75\phantom{}}\\\phantom{15)999999}0\\\end{array}
Find closest multiple of 15 to 75. We see that 5 \times 15 = 75 is the nearest. Now subtract 75 from 75 to get reminder 0. Add 5 to quotient.
\text{Quotient: }18935 \text{Reminder: }0
Since 0 is less than 15, stop the division. The reminder is 0. The topmost line 018935 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 18935.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}