Evaluate
28
Factor
2^{2}\times 7
Share
Copied to clipboard
\begin{array}{l}\phantom{10)}\phantom{1}\\10\overline{)280}\\\end{array}
Use the 1^{st} digit 2 from dividend 280
\begin{array}{l}\phantom{10)}0\phantom{2}\\10\overline{)280}\\\end{array}
Since 2 is less than 10, use the next digit 8 from dividend 280 and add 0 to the quotient
\begin{array}{l}\phantom{10)}0\phantom{3}\\10\overline{)280}\\\end{array}
Use the 2^{nd} digit 8 from dividend 280
\begin{array}{l}\phantom{10)}02\phantom{4}\\10\overline{)280}\\\phantom{10)}\underline{\phantom{}20\phantom{9}}\\\phantom{10)9}8\\\end{array}
Find closest multiple of 10 to 28. We see that 2 \times 10 = 20 is the nearest. Now subtract 20 from 28 to get reminder 8. Add 2 to quotient.
\begin{array}{l}\phantom{10)}02\phantom{5}\\10\overline{)280}\\\phantom{10)}\underline{\phantom{}20\phantom{9}}\\\phantom{10)9}80\\\end{array}
Use the 3^{rd} digit 0 from dividend 280
\begin{array}{l}\phantom{10)}028\phantom{6}\\10\overline{)280}\\\phantom{10)}\underline{\phantom{}20\phantom{9}}\\\phantom{10)9}80\\\phantom{10)}\underline{\phantom{9}80\phantom{}}\\\phantom{10)999}0\\\end{array}
Find closest multiple of 10 to 80. We see that 8 \times 10 = 80 is the nearest. Now subtract 80 from 80 to get reminder 0. Add 8 to quotient.
\text{Quotient: }28 \text{Reminder: }0
Since 0 is less than 10, stop the division. The reminder is 0. The topmost line 028 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 28.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}