Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(28y^{3}\right)^{1}\times \frac{1}{7y^{7}}
Use the rules of exponents to simplify the expression.
28^{1}\left(y^{3}\right)^{1}\times \frac{1}{7}\times \frac{1}{y^{7}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
28^{1}\times \frac{1}{7}\left(y^{3}\right)^{1}\times \frac{1}{y^{7}}
Use the Commutative Property of Multiplication.
28^{1}\times \frac{1}{7}y^{3}y^{7\left(-1\right)}
To raise a power to another power, multiply the exponents.
28^{1}\times \frac{1}{7}y^{3}y^{-7}
Multiply 7 times -1.
28^{1}\times \frac{1}{7}y^{3-7}
To multiply powers of the same base, add their exponents.
28^{1}\times \frac{1}{7}y^{-4}
Add the exponents 3 and -7.
28\times \frac{1}{7}y^{-4}
Raise 28 to the power 1.
4y^{-4}
Multiply 28 times \frac{1}{7}.
\frac{28^{1}y^{3}}{7^{1}y^{7}}
Use the rules of exponents to simplify the expression.
\frac{28^{1}y^{3-7}}{7^{1}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{28^{1}y^{-4}}{7^{1}}
Subtract 7 from 3.
4y^{-4}
Divide 28 by 7.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{28}{7}y^{3-7})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}y}(4y^{-4})
Do the arithmetic.
-4\times 4y^{-4-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-16y^{-5}
Do the arithmetic.