Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. k
Tick mark Image

Similar Problems from Web Search

Share

\left(28k^{5}\right)^{1}\times \frac{1}{-4k^{2}}
Use the rules of exponents to simplify the expression.
28^{1}\left(k^{5}\right)^{1}\times \frac{1}{-4}\times \frac{1}{k^{2}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
28^{1}\times \frac{1}{-4}\left(k^{5}\right)^{1}\times \frac{1}{k^{2}}
Use the Commutative Property of Multiplication.
28^{1}\times \frac{1}{-4}k^{5}k^{2\left(-1\right)}
To raise a power to another power, multiply the exponents.
28^{1}\times \frac{1}{-4}k^{5}k^{-2}
Multiply 2 times -1.
28^{1}\times \frac{1}{-4}k^{5-2}
To multiply powers of the same base, add their exponents.
28^{1}\times \frac{1}{-4}k^{3}
Add the exponents 5 and -2.
28\times \frac{1}{-4}k^{3}
Raise 28 to the power 1.
28\left(-\frac{1}{4}\right)k^{3}
Raise -4 to the power -1.
-7k^{3}
Multiply 28 times -\frac{1}{4}.
\frac{28^{1}k^{5}}{\left(-4\right)^{1}k^{2}}
Use the rules of exponents to simplify the expression.
\frac{28^{1}k^{5-2}}{\left(-4\right)^{1}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{28^{1}k^{3}}{\left(-4\right)^{1}}
Subtract 2 from 5.
-7k^{3}
Divide 28 by -4.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{28}{-4}k^{5-2})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}k}(-7k^{3})
Do the arithmetic.
3\left(-7\right)k^{3-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-21k^{2}
Do the arithmetic.