Evaluate
\frac{28}{23}\approx 1.217391304
Factor
\frac{2 ^ {2} \cdot 7}{23} = 1\frac{5}{23} = 1.2173913043478262
Share
Copied to clipboard
\begin{array}{l}\phantom{23)}\phantom{1}\\23\overline{)28}\\\end{array}
Use the 1^{st} digit 2 from dividend 28
\begin{array}{l}\phantom{23)}0\phantom{2}\\23\overline{)28}\\\end{array}
Since 2 is less than 23, use the next digit 8 from dividend 28 and add 0 to the quotient
\begin{array}{l}\phantom{23)}0\phantom{3}\\23\overline{)28}\\\end{array}
Use the 2^{nd} digit 8 from dividend 28
\begin{array}{l}\phantom{23)}01\phantom{4}\\23\overline{)28}\\\phantom{23)}\underline{\phantom{}23\phantom{}}\\\phantom{23)9}5\\\end{array}
Find closest multiple of 23 to 28. We see that 1 \times 23 = 23 is the nearest. Now subtract 23 from 28 to get reminder 5. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }5
Since 5 is less than 23, stop the division. The reminder is 5. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}