Evaluate
\frac{683}{433}\approx 1.577367206
Factor
\frac{683}{433} = 1\frac{250}{433} = 1.5773672055427252
Share
Copied to clipboard
\begin{array}{l}\phantom{1732)}\phantom{1}\\1732\overline{)2732}\\\end{array}
Use the 1^{st} digit 2 from dividend 2732
\begin{array}{l}\phantom{1732)}0\phantom{2}\\1732\overline{)2732}\\\end{array}
Since 2 is less than 1732, use the next digit 7 from dividend 2732 and add 0 to the quotient
\begin{array}{l}\phantom{1732)}0\phantom{3}\\1732\overline{)2732}\\\end{array}
Use the 2^{nd} digit 7 from dividend 2732
\begin{array}{l}\phantom{1732)}00\phantom{4}\\1732\overline{)2732}\\\end{array}
Since 27 is less than 1732, use the next digit 3 from dividend 2732 and add 0 to the quotient
\begin{array}{l}\phantom{1732)}00\phantom{5}\\1732\overline{)2732}\\\end{array}
Use the 3^{rd} digit 3 from dividend 2732
\begin{array}{l}\phantom{1732)}000\phantom{6}\\1732\overline{)2732}\\\end{array}
Since 273 is less than 1732, use the next digit 2 from dividend 2732 and add 0 to the quotient
\begin{array}{l}\phantom{1732)}000\phantom{7}\\1732\overline{)2732}\\\end{array}
Use the 4^{th} digit 2 from dividend 2732
\begin{array}{l}\phantom{1732)}0001\phantom{8}\\1732\overline{)2732}\\\phantom{1732)}\underline{\phantom{}1732\phantom{}}\\\phantom{1732)}1000\\\end{array}
Find closest multiple of 1732 to 2732. We see that 1 \times 1732 = 1732 is the nearest. Now subtract 1732 from 2732 to get reminder 1000. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }1000
Since 1000 is less than 1732, stop the division. The reminder is 1000. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}