Evaluate
\frac{68}{23}\approx 2.956521739
Factor
\frac{2 ^ {2} \cdot 17}{23} = 2\frac{22}{23} = 2.9565217391304346
Share
Copied to clipboard
\begin{array}{l}\phantom{92)}\phantom{1}\\92\overline{)272}\\\end{array}
Use the 1^{st} digit 2 from dividend 272
\begin{array}{l}\phantom{92)}0\phantom{2}\\92\overline{)272}\\\end{array}
Since 2 is less than 92, use the next digit 7 from dividend 272 and add 0 to the quotient
\begin{array}{l}\phantom{92)}0\phantom{3}\\92\overline{)272}\\\end{array}
Use the 2^{nd} digit 7 from dividend 272
\begin{array}{l}\phantom{92)}00\phantom{4}\\92\overline{)272}\\\end{array}
Since 27 is less than 92, use the next digit 2 from dividend 272 and add 0 to the quotient
\begin{array}{l}\phantom{92)}00\phantom{5}\\92\overline{)272}\\\end{array}
Use the 3^{rd} digit 2 from dividend 272
\begin{array}{l}\phantom{92)}002\phantom{6}\\92\overline{)272}\\\phantom{92)}\underline{\phantom{}184\phantom{}}\\\phantom{92)9}88\\\end{array}
Find closest multiple of 92 to 272. We see that 2 \times 92 = 184 is the nearest. Now subtract 184 from 272 to get reminder 88. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }88
Since 88 is less than 92, stop the division. The reminder is 88. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}