Evaluate
\frac{1033}{51}\approx 20.254901961
Factor
\frac{1033}{3 \cdot 17} = 20\frac{13}{51} = 20.254901960784313
Share
Copied to clipboard
\frac{27-\frac{1\left(-1\right)}{51\times 3}}{1+\frac{1}{3}}
Multiply \frac{1}{51} times -\frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{27-\frac{-1}{153}}{1+\frac{1}{3}}
Do the multiplications in the fraction \frac{1\left(-1\right)}{51\times 3}.
\frac{27-\left(-\frac{1}{153}\right)}{1+\frac{1}{3}}
Fraction \frac{-1}{153} can be rewritten as -\frac{1}{153} by extracting the negative sign.
\frac{27+\frac{1}{153}}{1+\frac{1}{3}}
The opposite of -\frac{1}{153} is \frac{1}{153}.
\frac{\frac{4131}{153}+\frac{1}{153}}{1+\frac{1}{3}}
Convert 27 to fraction \frac{4131}{153}.
\frac{\frac{4131+1}{153}}{1+\frac{1}{3}}
Since \frac{4131}{153} and \frac{1}{153} have the same denominator, add them by adding their numerators.
\frac{\frac{4132}{153}}{1+\frac{1}{3}}
Add 4131 and 1 to get 4132.
\frac{\frac{4132}{153}}{\frac{3}{3}+\frac{1}{3}}
Convert 1 to fraction \frac{3}{3}.
\frac{\frac{4132}{153}}{\frac{3+1}{3}}
Since \frac{3}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
\frac{\frac{4132}{153}}{\frac{4}{3}}
Add 3 and 1 to get 4.
\frac{4132}{153}\times \frac{3}{4}
Divide \frac{4132}{153} by \frac{4}{3} by multiplying \frac{4132}{153} by the reciprocal of \frac{4}{3}.
\frac{4132\times 3}{153\times 4}
Multiply \frac{4132}{153} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{12396}{612}
Do the multiplications in the fraction \frac{4132\times 3}{153\times 4}.
\frac{1033}{51}
Reduce the fraction \frac{12396}{612} to lowest terms by extracting and canceling out 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}