Verify
false
Share
Copied to clipboard
\frac{27-1}{13}+\frac{4}{7}+\frac{3}{7}=\frac{72}{82}
Since \frac{27}{13} and \frac{1}{13} have the same denominator, subtract them by subtracting their numerators.
\frac{26}{13}+\frac{4}{7}+\frac{3}{7}=\frac{72}{82}
Subtract 1 from 27 to get 26.
2+\frac{4}{7}+\frac{3}{7}=\frac{72}{82}
Divide 26 by 13 to get 2.
\frac{14}{7}+\frac{4}{7}+\frac{3}{7}=\frac{72}{82}
Convert 2 to fraction \frac{14}{7}.
\frac{14+4}{7}+\frac{3}{7}=\frac{72}{82}
Since \frac{14}{7} and \frac{4}{7} have the same denominator, add them by adding their numerators.
\frac{18}{7}+\frac{3}{7}=\frac{72}{82}
Add 14 and 4 to get 18.
\frac{18+3}{7}=\frac{72}{82}
Since \frac{18}{7} and \frac{3}{7} have the same denominator, add them by adding their numerators.
\frac{21}{7}=\frac{72}{82}
Add 18 and 3 to get 21.
3=\frac{72}{82}
Divide 21 by 7 to get 3.
3=\frac{36}{41}
Reduce the fraction \frac{72}{82} to lowest terms by extracting and canceling out 2.
\frac{123}{41}=\frac{36}{41}
Convert 3 to fraction \frac{123}{41}.
\text{false}
Compare \frac{123}{41} and \frac{36}{41}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}