Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{27\left(\sqrt{11}-\sqrt{2}\right)}{\left(\sqrt{11}+\sqrt{2}\right)\left(\sqrt{11}-\sqrt{2}\right)}
Rationalize the denominator of \frac{27}{\sqrt{11}+\sqrt{2}} by multiplying numerator and denominator by \sqrt{11}-\sqrt{2}.
\frac{27\left(\sqrt{11}-\sqrt{2}\right)}{\left(\sqrt{11}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(\sqrt{11}+\sqrt{2}\right)\left(\sqrt{11}-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{27\left(\sqrt{11}-\sqrt{2}\right)}{11-2}
Square \sqrt{11}. Square \sqrt{2}.
\frac{27\left(\sqrt{11}-\sqrt{2}\right)}{9}
Subtract 2 from 11 to get 9.
3\left(\sqrt{11}-\sqrt{2}\right)
Divide 27\left(\sqrt{11}-\sqrt{2}\right) by 9 to get 3\left(\sqrt{11}-\sqrt{2}\right).
3\sqrt{11}-3\sqrt{2}
Use the distributive property to multiply 3 by \sqrt{11}-\sqrt{2}.