Evaluate
\frac{2643}{536}\approx 4.930970149
Factor
\frac{3 \cdot 881}{2 ^ {3} \cdot 67} = 4\frac{499}{536} = 4.9309701492537314
Share
Copied to clipboard
\begin{array}{l}\phantom{536)}\phantom{1}\\536\overline{)2643}\\\end{array}
Use the 1^{st} digit 2 from dividend 2643
\begin{array}{l}\phantom{536)}0\phantom{2}\\536\overline{)2643}\\\end{array}
Since 2 is less than 536, use the next digit 6 from dividend 2643 and add 0 to the quotient
\begin{array}{l}\phantom{536)}0\phantom{3}\\536\overline{)2643}\\\end{array}
Use the 2^{nd} digit 6 from dividend 2643
\begin{array}{l}\phantom{536)}00\phantom{4}\\536\overline{)2643}\\\end{array}
Since 26 is less than 536, use the next digit 4 from dividend 2643 and add 0 to the quotient
\begin{array}{l}\phantom{536)}00\phantom{5}\\536\overline{)2643}\\\end{array}
Use the 3^{rd} digit 4 from dividend 2643
\begin{array}{l}\phantom{536)}000\phantom{6}\\536\overline{)2643}\\\end{array}
Since 264 is less than 536, use the next digit 3 from dividend 2643 and add 0 to the quotient
\begin{array}{l}\phantom{536)}000\phantom{7}\\536\overline{)2643}\\\end{array}
Use the 4^{th} digit 3 from dividend 2643
\begin{array}{l}\phantom{536)}0004\phantom{8}\\536\overline{)2643}\\\phantom{536)}\underline{\phantom{}2144\phantom{}}\\\phantom{536)9}499\\\end{array}
Find closest multiple of 536 to 2643. We see that 4 \times 536 = 2144 is the nearest. Now subtract 2144 from 2643 to get reminder 499. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }499
Since 499 is less than 536, stop the division. The reminder is 499. The topmost line 0004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}