Evaluate
\frac{132}{17}\approx 7.764705882
Factor
\frac{2 ^ {2} \cdot 3 \cdot 11}{17} = 7\frac{13}{17} = 7.764705882352941
Share
Copied to clipboard
\begin{array}{l}\phantom{34)}\phantom{1}\\34\overline{)264}\\\end{array}
Use the 1^{st} digit 2 from dividend 264
\begin{array}{l}\phantom{34)}0\phantom{2}\\34\overline{)264}\\\end{array}
Since 2 is less than 34, use the next digit 6 from dividend 264 and add 0 to the quotient
\begin{array}{l}\phantom{34)}0\phantom{3}\\34\overline{)264}\\\end{array}
Use the 2^{nd} digit 6 from dividend 264
\begin{array}{l}\phantom{34)}00\phantom{4}\\34\overline{)264}\\\end{array}
Since 26 is less than 34, use the next digit 4 from dividend 264 and add 0 to the quotient
\begin{array}{l}\phantom{34)}00\phantom{5}\\34\overline{)264}\\\end{array}
Use the 3^{rd} digit 4 from dividend 264
\begin{array}{l}\phantom{34)}007\phantom{6}\\34\overline{)264}\\\phantom{34)}\underline{\phantom{}238\phantom{}}\\\phantom{34)9}26\\\end{array}
Find closest multiple of 34 to 264. We see that 7 \times 34 = 238 is the nearest. Now subtract 238 from 264 to get reminder 26. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }26
Since 26 is less than 34, stop the division. The reminder is 26. The topmost line 007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}