Evaluate
\frac{13400000}{23}\approx 582608.695652174
Factor
\frac{2 ^ {6} \cdot 5 ^ {5} \cdot 67}{23} = 582608\frac{16}{23} = 582608.695652174
Share
Copied to clipboard
\begin{array}{l}\phantom{46)}\phantom{1}\\46\overline{)26800000}\\\end{array}
Use the 1^{st} digit 2 from dividend 26800000
\begin{array}{l}\phantom{46)}0\phantom{2}\\46\overline{)26800000}\\\end{array}
Since 2 is less than 46, use the next digit 6 from dividend 26800000 and add 0 to the quotient
\begin{array}{l}\phantom{46)}0\phantom{3}\\46\overline{)26800000}\\\end{array}
Use the 2^{nd} digit 6 from dividend 26800000
\begin{array}{l}\phantom{46)}00\phantom{4}\\46\overline{)26800000}\\\end{array}
Since 26 is less than 46, use the next digit 8 from dividend 26800000 and add 0 to the quotient
\begin{array}{l}\phantom{46)}00\phantom{5}\\46\overline{)26800000}\\\end{array}
Use the 3^{rd} digit 8 from dividend 26800000
\begin{array}{l}\phantom{46)}005\phantom{6}\\46\overline{)26800000}\\\phantom{46)}\underline{\phantom{}230\phantom{99999}}\\\phantom{46)9}38\\\end{array}
Find closest multiple of 46 to 268. We see that 5 \times 46 = 230 is the nearest. Now subtract 230 from 268 to get reminder 38. Add 5 to quotient.
\begin{array}{l}\phantom{46)}005\phantom{7}\\46\overline{)26800000}\\\phantom{46)}\underline{\phantom{}230\phantom{99999}}\\\phantom{46)9}380\\\end{array}
Use the 4^{th} digit 0 from dividend 26800000
\begin{array}{l}\phantom{46)}0058\phantom{8}\\46\overline{)26800000}\\\phantom{46)}\underline{\phantom{}230\phantom{99999}}\\\phantom{46)9}380\\\phantom{46)}\underline{\phantom{9}368\phantom{9999}}\\\phantom{46)99}12\\\end{array}
Find closest multiple of 46 to 380. We see that 8 \times 46 = 368 is the nearest. Now subtract 368 from 380 to get reminder 12. Add 8 to quotient.
\begin{array}{l}\phantom{46)}0058\phantom{9}\\46\overline{)26800000}\\\phantom{46)}\underline{\phantom{}230\phantom{99999}}\\\phantom{46)9}380\\\phantom{46)}\underline{\phantom{9}368\phantom{9999}}\\\phantom{46)99}120\\\end{array}
Use the 5^{th} digit 0 from dividend 26800000
\begin{array}{l}\phantom{46)}00582\phantom{10}\\46\overline{)26800000}\\\phantom{46)}\underline{\phantom{}230\phantom{99999}}\\\phantom{46)9}380\\\phantom{46)}\underline{\phantom{9}368\phantom{9999}}\\\phantom{46)99}120\\\phantom{46)}\underline{\phantom{999}92\phantom{999}}\\\phantom{46)999}28\\\end{array}
Find closest multiple of 46 to 120. We see that 2 \times 46 = 92 is the nearest. Now subtract 92 from 120 to get reminder 28. Add 2 to quotient.
\begin{array}{l}\phantom{46)}00582\phantom{11}\\46\overline{)26800000}\\\phantom{46)}\underline{\phantom{}230\phantom{99999}}\\\phantom{46)9}380\\\phantom{46)}\underline{\phantom{9}368\phantom{9999}}\\\phantom{46)99}120\\\phantom{46)}\underline{\phantom{999}92\phantom{999}}\\\phantom{46)999}280\\\end{array}
Use the 6^{th} digit 0 from dividend 26800000
\begin{array}{l}\phantom{46)}005826\phantom{12}\\46\overline{)26800000}\\\phantom{46)}\underline{\phantom{}230\phantom{99999}}\\\phantom{46)9}380\\\phantom{46)}\underline{\phantom{9}368\phantom{9999}}\\\phantom{46)99}120\\\phantom{46)}\underline{\phantom{999}92\phantom{999}}\\\phantom{46)999}280\\\phantom{46)}\underline{\phantom{999}276\phantom{99}}\\\phantom{46)99999}4\\\end{array}
Find closest multiple of 46 to 280. We see that 6 \times 46 = 276 is the nearest. Now subtract 276 from 280 to get reminder 4. Add 6 to quotient.
\begin{array}{l}\phantom{46)}005826\phantom{13}\\46\overline{)26800000}\\\phantom{46)}\underline{\phantom{}230\phantom{99999}}\\\phantom{46)9}380\\\phantom{46)}\underline{\phantom{9}368\phantom{9999}}\\\phantom{46)99}120\\\phantom{46)}\underline{\phantom{999}92\phantom{999}}\\\phantom{46)999}280\\\phantom{46)}\underline{\phantom{999}276\phantom{99}}\\\phantom{46)99999}40\\\end{array}
Use the 7^{th} digit 0 from dividend 26800000
\begin{array}{l}\phantom{46)}0058260\phantom{14}\\46\overline{)26800000}\\\phantom{46)}\underline{\phantom{}230\phantom{99999}}\\\phantom{46)9}380\\\phantom{46)}\underline{\phantom{9}368\phantom{9999}}\\\phantom{46)99}120\\\phantom{46)}\underline{\phantom{999}92\phantom{999}}\\\phantom{46)999}280\\\phantom{46)}\underline{\phantom{999}276\phantom{99}}\\\phantom{46)99999}40\\\end{array}
Since 40 is less than 46, use the next digit 0 from dividend 26800000 and add 0 to the quotient
\begin{array}{l}\phantom{46)}0058260\phantom{15}\\46\overline{)26800000}\\\phantom{46)}\underline{\phantom{}230\phantom{99999}}\\\phantom{46)9}380\\\phantom{46)}\underline{\phantom{9}368\phantom{9999}}\\\phantom{46)99}120\\\phantom{46)}\underline{\phantom{999}92\phantom{999}}\\\phantom{46)999}280\\\phantom{46)}\underline{\phantom{999}276\phantom{99}}\\\phantom{46)99999}400\\\end{array}
Use the 8^{th} digit 0 from dividend 26800000
\begin{array}{l}\phantom{46)}00582608\phantom{16}\\46\overline{)26800000}\\\phantom{46)}\underline{\phantom{}230\phantom{99999}}\\\phantom{46)9}380\\\phantom{46)}\underline{\phantom{9}368\phantom{9999}}\\\phantom{46)99}120\\\phantom{46)}\underline{\phantom{999}92\phantom{999}}\\\phantom{46)999}280\\\phantom{46)}\underline{\phantom{999}276\phantom{99}}\\\phantom{46)99999}400\\\phantom{46)}\underline{\phantom{99999}368\phantom{}}\\\phantom{46)999999}32\\\end{array}
Find closest multiple of 46 to 400. We see that 8 \times 46 = 368 is the nearest. Now subtract 368 from 400 to get reminder 32. Add 8 to quotient.
\text{Quotient: }582608 \text{Reminder: }32
Since 32 is less than 46, stop the division. The reminder is 32. The topmost line 00582608 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 582608.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}